{"title":"具有轴向邻域的 d 维引导渗流模型","authors":"Daniel Blanquicett","doi":"10.1016/j.spa.2024.104383","DOIUrl":null,"url":null,"abstract":"<div><p>Fix positive integers <span><math><mrow><mi>d</mi><mo>,</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span>. For large <span><math><mi>L</mi></math></span>, each site of <span><math><mrow><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> can be at state 0 or 1 (infected), and its neighbourhood consists of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> nearest neighbours in the <span><math><mrow><mo>±</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>-directions for each <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability <span><math><mi>p</mi></math></span>. We infect any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> at state 0 already having <span><math><mi>r</mi></math></span> infected neighbours, and infected sites remain infected forever.</p><p>In this paper we study the critical length for percolation, defined by <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>L</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mtext>is eventually infected</mtext><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. We determine the <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-times iterated logarithm of <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> up to a constant factor, for all <span><math><mi>d</mi></math></span>-tuples <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>.</p><p>We conjecture that we can reduce the problem of determining this threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, to that of determining the threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> only.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104383"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The d-dimensional bootstrap percolation models with axial neighbourhoods\",\"authors\":\"Daniel Blanquicett\",\"doi\":\"10.1016/j.spa.2024.104383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fix positive integers <span><math><mrow><mi>d</mi><mo>,</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span>. For large <span><math><mi>L</mi></math></span>, each site of <span><math><mrow><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> can be at state 0 or 1 (infected), and its neighbourhood consists of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> nearest neighbours in the <span><math><mrow><mo>±</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>-directions for each <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability <span><math><mi>p</mi></math></span>. We infect any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> at state 0 already having <span><math><mi>r</mi></math></span> infected neighbours, and infected sites remain infected forever.</p><p>In this paper we study the critical length for percolation, defined by <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>L</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mtext>is eventually infected</mtext><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. We determine the <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-times iterated logarithm of <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> up to a constant factor, for all <span><math><mi>d</mi></math></span>-tuples <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>.</p><p>We conjecture that we can reduce the problem of determining this threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, to that of determining the threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> only.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"174 \",\"pages\":\"Article 104383\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The d-dimensional bootstrap percolation models with axial neighbourhoods
Fix positive integers and . For large , each site of can be at state 0 or 1 (infected), and its neighbourhood consists of the nearest neighbours in the -directions for each . The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability . We infect any vertex at state 0 already having infected neighbours, and infected sites remain infected forever.
In this paper we study the critical length for percolation, defined by . We determine the -times iterated logarithm of up to a constant factor, for all -tuples and all .
We conjecture that we can reduce the problem of determining this threshold for all and all , to that of determining the threshold for all and only.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.