具有轴向邻域的 d 维引导渗流模型

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Daniel Blanquicett
{"title":"具有轴向邻域的 d 维引导渗流模型","authors":"Daniel Blanquicett","doi":"10.1016/j.spa.2024.104383","DOIUrl":null,"url":null,"abstract":"<div><p>Fix positive integers <span><math><mrow><mi>d</mi><mo>,</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span>. For large <span><math><mi>L</mi></math></span>, each site of <span><math><mrow><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> can be at state 0 or 1 (infected), and its neighbourhood consists of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> nearest neighbours in the <span><math><mrow><mo>±</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>-directions for each <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability <span><math><mi>p</mi></math></span>. We infect any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> at state 0 already having <span><math><mi>r</mi></math></span> infected neighbours, and infected sites remain infected forever.</p><p>In this paper we study the critical length for percolation, defined by <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>L</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mtext>is eventually infected</mtext><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. We determine the <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-times iterated logarithm of <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> up to a constant factor, for all <span><math><mi>d</mi></math></span>-tuples <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>.</p><p>We conjecture that we can reduce the problem of determining this threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, to that of determining the threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> only.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104383"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The d-dimensional bootstrap percolation models with axial neighbourhoods\",\"authors\":\"Daniel Blanquicett\",\"doi\":\"10.1016/j.spa.2024.104383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fix positive integers <span><math><mrow><mi>d</mi><mo>,</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span>. For large <span><math><mi>L</mi></math></span>, each site of <span><math><mrow><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> can be at state 0 or 1 (infected), and its neighbourhood consists of the <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> nearest neighbours in the <span><math><mrow><mo>±</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>-directions for each <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></mrow></mrow></math></span>. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability <span><math><mi>p</mi></math></span>. We infect any vertex <span><math><mrow><mi>v</mi><mo>∈</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> at state 0 already having <span><math><mi>r</mi></math></span> infected neighbours, and infected sites remain infected forever.</p><p>In this paper we study the critical length for percolation, defined by <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>L</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>L</mi><mo>}</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup><mtext>is eventually infected</mtext><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. We determine the <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-times iterated logarithm of <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msubsup><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> up to a constant factor, for all <span><math><mi>d</mi></math></span>-tuples <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>.</p><p>We conjecture that we can reduce the problem of determining this threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and all <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, to that of determining the threshold for all <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> only.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"174 \",\"pages\":\"Article 104383\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

固定正整数 d,r 和 a1≤a2≤⋯≤ad.对于大 L,{1,...,L}d⊂Zd 的每个点都可能处于状态 0 或 1(被感染),其邻域由每个 k∈{1,2,...d} 的 ±ek 方向上的 ak 个近邻组成。状态在离散时间内的演化过程如下:在本文中,我们研究了渗滤的临界长度,定义为 Lc(Nra1,...ad,p)=min{L∈N:Pp({1,...,L}最终被感染)≥1/2}。对于所有 d 元组(a1,...,ad)和所有 r∈{a2+⋯+ad+1,...,a1+a2+⋯+ad},我们确定 Lc(Nra1,...,ad,p)的(d-1)次迭代对数,直到一个常数因子。我们猜想,我们可以把为所有 d≥3 和所有 r∈{ad+1,...,a1+a2+⋯+ad} 确定阈值的问题,简化为只为所有 d≥3 和 r∈{ad+1,...,ad-1+ad} 确定阈值的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The d-dimensional bootstrap percolation models with axial neighbourhoods

Fix positive integers d,r and a1a2ad. For large L, each site of {1,,L}dZd can be at state 0 or 1 (infected), and its neighbourhood consists of the ak nearest neighbours in the ±ek-directions for each k{1,2,,d}. The state will evolve in discrete time as follows: At time 0, vertices are independently 1 with some probability p. We infect any vertex v{1,,L}d at state 0 already having r infected neighbours, and infected sites remain infected forever.

In this paper we study the critical length for percolation, defined by Lc(Nra1,,ad,p)=min{LN:Pp({1,,L}dis eventually infected)1/2}. We determine the (d1)-times iterated logarithm of Lc(Nra1,,ad,p) up to a constant factor, for all d-tuples (a1,,ad) and all r{a2++ad+1,,a1+a2++ad}.

We conjecture that we can reduce the problem of determining this threshold for all d3 and all r{ad+1,,a1+a2++ad}, to that of determining the threshold for all d3 and r{ad+1,,ad1+ad} only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信