{"title":"塞纳湾悬浮颗粒物对极端作用力的响应","authors":"Coline Poppeschi , Romaric Verney , Guillaume Charria","doi":"10.1016/j.margeo.2024.107292","DOIUrl":null,"url":null,"abstract":"<div><p>The latest Intergovernmental Panel on Climate Change report of 2023 alerts about an increase in the occurrence and intensity of extreme hydro-meteorological events such as storms and extreme river flows, <em>i.e.</em> drought and floods. Investigating the occurrence of these extreme events in the past 15 years and their impacts on sediment dynamics will provide crucial knowledge for anticipating future trajectories of coastal ecosystems. Time series from <em>in situ</em> observations are analyzed to identify extreme events of river flows and waves and examine their impact on Suspended Particulate Matter (SPM) dynamics in a highly turbid coastal area equipped with a high frequency <em>in situ</em> monitoring station at the interface between the Seine Estuary and the Bay of Seine (northern coast of France). Extreme river flow and wave orbital velocity events are investigated because high river discharge contributes to deliver large amounts of SPM concentration to the bay and strong wave action within the bay can lead to erosion and resuspension of bottom sediments. An original detection method is proposed, based on high frequency <em>in situ</em> observations combined with satellite and model data from 2006 to 2022. Extreme forcings are examined through their specific characteristics (high intensity, long duration, season of occurrence, succession of events), their impact on SPM concentration in the coastal environment and the comparison to mean seasonal dynamics. A positive relationship exists between SPM concentration and high SPM spatial extent and forcing intensity. Extremes are more intense in winter for both forcings and generate larger SPM concentration anomalies. However, extreme events during late spring/summer, periods or mean low forcing intensity, are demonstrated to generate SPM concentration anomalies up to 4 times larger than the monthly mean value, hence possibly strongly impacting the system during these atypical periods. This is particularly important as analyzing the distribution of extreme river flow events over the last 60 years indicated an increase in their occurrence and more important the progressive occurrence of high intensity extreme events during spring/summer periods.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"472 ","pages":"Article 107292"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suspended particulate matter response to extreme forcings in the Bay of Seine\",\"authors\":\"Coline Poppeschi , Romaric Verney , Guillaume Charria\",\"doi\":\"10.1016/j.margeo.2024.107292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The latest Intergovernmental Panel on Climate Change report of 2023 alerts about an increase in the occurrence and intensity of extreme hydro-meteorological events such as storms and extreme river flows, <em>i.e.</em> drought and floods. Investigating the occurrence of these extreme events in the past 15 years and their impacts on sediment dynamics will provide crucial knowledge for anticipating future trajectories of coastal ecosystems. Time series from <em>in situ</em> observations are analyzed to identify extreme events of river flows and waves and examine their impact on Suspended Particulate Matter (SPM) dynamics in a highly turbid coastal area equipped with a high frequency <em>in situ</em> monitoring station at the interface between the Seine Estuary and the Bay of Seine (northern coast of France). Extreme river flow and wave orbital velocity events are investigated because high river discharge contributes to deliver large amounts of SPM concentration to the bay and strong wave action within the bay can lead to erosion and resuspension of bottom sediments. An original detection method is proposed, based on high frequency <em>in situ</em> observations combined with satellite and model data from 2006 to 2022. Extreme forcings are examined through their specific characteristics (high intensity, long duration, season of occurrence, succession of events), their impact on SPM concentration in the coastal environment and the comparison to mean seasonal dynamics. A positive relationship exists between SPM concentration and high SPM spatial extent and forcing intensity. Extremes are more intense in winter for both forcings and generate larger SPM concentration anomalies. However, extreme events during late spring/summer, periods or mean low forcing intensity, are demonstrated to generate SPM concentration anomalies up to 4 times larger than the monthly mean value, hence possibly strongly impacting the system during these atypical periods. This is particularly important as analyzing the distribution of extreme river flow events over the last 60 years indicated an increase in their occurrence and more important the progressive occurrence of high intensity extreme events during spring/summer periods.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"472 \",\"pages\":\"Article 107292\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724000768\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724000768","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Suspended particulate matter response to extreme forcings in the Bay of Seine
The latest Intergovernmental Panel on Climate Change report of 2023 alerts about an increase in the occurrence and intensity of extreme hydro-meteorological events such as storms and extreme river flows, i.e. drought and floods. Investigating the occurrence of these extreme events in the past 15 years and their impacts on sediment dynamics will provide crucial knowledge for anticipating future trajectories of coastal ecosystems. Time series from in situ observations are analyzed to identify extreme events of river flows and waves and examine their impact on Suspended Particulate Matter (SPM) dynamics in a highly turbid coastal area equipped with a high frequency in situ monitoring station at the interface between the Seine Estuary and the Bay of Seine (northern coast of France). Extreme river flow and wave orbital velocity events are investigated because high river discharge contributes to deliver large amounts of SPM concentration to the bay and strong wave action within the bay can lead to erosion and resuspension of bottom sediments. An original detection method is proposed, based on high frequency in situ observations combined with satellite and model data from 2006 to 2022. Extreme forcings are examined through their specific characteristics (high intensity, long duration, season of occurrence, succession of events), their impact on SPM concentration in the coastal environment and the comparison to mean seasonal dynamics. A positive relationship exists between SPM concentration and high SPM spatial extent and forcing intensity. Extremes are more intense in winter for both forcings and generate larger SPM concentration anomalies. However, extreme events during late spring/summer, periods or mean low forcing intensity, are demonstrated to generate SPM concentration anomalies up to 4 times larger than the monthly mean value, hence possibly strongly impacting the system during these atypical periods. This is particularly important as analyzing the distribution of extreme river flow events over the last 60 years indicated an increase in their occurrence and more important the progressive occurrence of high intensity extreme events during spring/summer periods.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.