使用单导联心电图记录的基于图的心律失常分类方法

Dorsa EPMoghaddam , Ananya Muguli , Mehdi Razavi , Behnaam Aazhang
{"title":"使用单导联心电图记录的基于图的心律失常分类方法","authors":"Dorsa EPMoghaddam ,&nbsp;Ananya Muguli ,&nbsp;Mehdi Razavi ,&nbsp;Behnaam Aazhang","doi":"10.1016/j.iswa.2024.200385","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"22 ","pages":"Article 200385"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000607/pdfft?md5=1ca4832d63eeddf441689db0de490c21&pid=1-s2.0-S2667305324000607-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings\",\"authors\":\"Dorsa EPMoghaddam ,&nbsp;Ananya Muguli ,&nbsp;Mehdi Razavi ,&nbsp;Behnaam Aazhang\",\"doi\":\"10.1016/j.iswa.2024.200385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"22 \",\"pages\":\"Article 200385\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000607/pdfft?md5=1ca4832d63eeddf441689db0de490c21&pid=1-s2.0-S2667305324000607-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种基于图的新方法,利用单导联心电图(ECG)对心律失常疾病进行准确分类。所提出的方法采用可见性图技术从时间信号中生成图。随后,从每个图中提取信息特征,然后输入分类器,将输入心电图信号与适当的目标心律失常类别相匹配。本研究中的六个目标类别是正常(N)、左束支传导阻滞(LBBB)、右束支传导阻滞(RBBB)、室性早搏(PVC)、房性早搏(A)和融合(F)搏动。研究人员探索了三种分类模型,包括图卷积神经网络(GCN)、多层感知器(MLP)和随机森林(RF)。利用 MIT-BIH 心律失常数据库中的心电图记录来训练和评估这些分类器。结果表明,多层感知器模型的性能最高,平均准确率达到 99.02%。紧随其后的随机森林也表现出色,准确率达到 98.94%,同时提供了重要的直觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings

In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信