Usama Sajjad, Wei Chen, Mostafa Rezapour, Ziyu Su, Thomas Tavolara, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi
{"title":"利用深度学习从常规 H&E 染色切片中提高结直肠癌肿瘤芽检测能力","authors":"Usama Sajjad, Wei Chen, Mostafa Rezapour, Ziyu Su, Thomas Tavolara, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi","doi":"10.1117/12.3006796","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor budding refers to a cluster of one to four tumor cells located at the tumor-invasive front. While tumor budding is a prognostic factor for colorectal cancer, counting and grading tumor budding are time consuming and not highly reproducible. There could be high inter- and intra-reader disagreement on H&E evaluation. This leads to the noisy training (imperfect ground truth) of deep learning algorithms, resulting in high variability and losing their ability to generalize on unseen datasets. Pan-cytokeratin staining is one of the potential solutions to enhance the agreement, but it is not routinely used to identify tumor buds and can lead to false positives. Therefore, we aim to develop a weakly-supervised deep learning method for tumor bud detection from routine H&E-stained images that does not require strict tissue-level annotations. We also propose <i>Bayesian Multiple Instance Learning</i> (BMIL) that combines multiple annotated regions during the training process to further enhance the generalizability and stability in tumor bud detection. Our dataset consists of 29 colorectal cancer H&E-stained images that contain 115 tumor buds per slide on average. In six-fold cross-validation, our method demonstrated an average precision and recall of 0.94, and 0.86 respectively. These results provide preliminary evidence of the feasibility of our approach in improving the generalizability in tumor budding detection using H&E images while avoiding the need for non-routine immunohistochemical staining methods.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12933 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Colorectal Cancer Tumor Bud Detection Using Deep Learning from Routine H&E-Stained Slides.\",\"authors\":\"Usama Sajjad, Wei Chen, Mostafa Rezapour, Ziyu Su, Thomas Tavolara, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi\",\"doi\":\"10.1117/12.3006796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor budding refers to a cluster of one to four tumor cells located at the tumor-invasive front. While tumor budding is a prognostic factor for colorectal cancer, counting and grading tumor budding are time consuming and not highly reproducible. There could be high inter- and intra-reader disagreement on H&E evaluation. This leads to the noisy training (imperfect ground truth) of deep learning algorithms, resulting in high variability and losing their ability to generalize on unseen datasets. Pan-cytokeratin staining is one of the potential solutions to enhance the agreement, but it is not routinely used to identify tumor buds and can lead to false positives. Therefore, we aim to develop a weakly-supervised deep learning method for tumor bud detection from routine H&E-stained images that does not require strict tissue-level annotations. We also propose <i>Bayesian Multiple Instance Learning</i> (BMIL) that combines multiple annotated regions during the training process to further enhance the generalizability and stability in tumor bud detection. Our dataset consists of 29 colorectal cancer H&E-stained images that contain 115 tumor buds per slide on average. In six-fold cross-validation, our method demonstrated an average precision and recall of 0.94, and 0.86 respectively. These results provide preliminary evidence of the feasibility of our approach in improving the generalizability in tumor budding detection using H&E images while avoiding the need for non-routine immunohistochemical staining methods.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12933 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Colorectal Cancer Tumor Bud Detection Using Deep Learning from Routine H&E-Stained Slides.
Tumor budding refers to a cluster of one to four tumor cells located at the tumor-invasive front. While tumor budding is a prognostic factor for colorectal cancer, counting and grading tumor budding are time consuming and not highly reproducible. There could be high inter- and intra-reader disagreement on H&E evaluation. This leads to the noisy training (imperfect ground truth) of deep learning algorithms, resulting in high variability and losing their ability to generalize on unseen datasets. Pan-cytokeratin staining is one of the potential solutions to enhance the agreement, but it is not routinely used to identify tumor buds and can lead to false positives. Therefore, we aim to develop a weakly-supervised deep learning method for tumor bud detection from routine H&E-stained images that does not require strict tissue-level annotations. We also propose Bayesian Multiple Instance Learning (BMIL) that combines multiple annotated regions during the training process to further enhance the generalizability and stability in tumor bud detection. Our dataset consists of 29 colorectal cancer H&E-stained images that contain 115 tumor buds per slide on average. In six-fold cross-validation, our method demonstrated an average precision and recall of 0.94, and 0.86 respectively. These results provide preliminary evidence of the feasibility of our approach in improving the generalizability in tumor budding detection using H&E images while avoiding the need for non-routine immunohistochemical staining methods.