新型 HDAC2 致病变体的特征:染色质病症中缺失的一块拼图。

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY
Human Genetics Pub Date : 2024-06-01 Epub Date: 2024-05-16 DOI:10.1007/s00439-024-02675-0
Elisabetta Di Fede, Antonella Lettieri, Esi Taci, Silvia Castiglioni, Stefano Rebellato, Chiara Parodi, Elisa Adele Colombo, Paolo Grazioli, Federica Natacci, Paola Marchisio, Lidia Pezzani, Grazia Fazio, Donatella Milani, Valentina Massa, Cristina Gervasini
{"title":"新型 HDAC2 致病变体的特征:染色质病症中缺失的一块拼图。","authors":"Elisabetta Di Fede, Antonella Lettieri, Esi Taci, Silvia Castiglioni, Stefano Rebellato, Chiara Parodi, Elisa Adele Colombo, Paolo Grazioli, Federica Natacci, Paola Marchisio, Lidia Pezzani, Grazia Fazio, Donatella Milani, Valentina Massa, Cristina Gervasini","doi":"10.1007/s00439-024-02675-0","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylases (HDACs) are enzymes pivotal for histone modification (i.e. acetylation marks removal), chromatin accessibility and gene expression regulation. Class I HDACs (including HDAC1, 2, 3, 8) are ubiquitously expressed and they often participate in multi-molecular protein complexes. To date, three neurodevelopmental disorders caused by mutations in genes encoding for HDACs (HDAC4, HDAC6 and HDAC8) and thus belonging to the group of chromatinopathies, have been described. We performed whole exome sequencing (WES) for a patient (#249) clinically diagnosed with the chromatinopathy Rubinstein-Taybi syndrome (RSTS) but negative for mutations in RSTS genes, identifying a de novo frameshift variant in HDAC2 gene. We then investigated its molecular effects in lymphoblastoid cell lines (LCLs) derived from the patient compared to LCLs from healthy donors (HD). As the variant was predicted to be likely pathogenetic and to affect the sequence of nuclear localization signal, we performed immunocytochemistry and lysates fractionation, observing a nuclear mis-localization of HDAC2 compared to HD LCLs. In addition, HDAC2 total protein abundance resulted altered in patient, and we found that newly identified variant in HDAC2 affects also acetylation levels, with significant difference in acetylation pattern among patient #249, HD and RSTS cells and in expression of a known molecular target. Remarkably, RNA-seq performed on #249, HD and RSTS cells shows differentially expressed genes (DEGs) common to #249 and RSTS. Interestingly, our reported patient was clinically diagnosed with RSTS, a chromatinopathy which known causative genes encode for enzymes antagonizing HDACs. These results support the role of HDAC2 as causative gene for chromatinopathies, strengthening the genotype-phenotype correlations in this relevant group of disorders.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of a novel HDAC2 pathogenetic variant: a missing puzzle piece for chromatinopathies.\",\"authors\":\"Elisabetta Di Fede, Antonella Lettieri, Esi Taci, Silvia Castiglioni, Stefano Rebellato, Chiara Parodi, Elisa Adele Colombo, Paolo Grazioli, Federica Natacci, Paola Marchisio, Lidia Pezzani, Grazia Fazio, Donatella Milani, Valentina Massa, Cristina Gervasini\",\"doi\":\"10.1007/s00439-024-02675-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone deacetylases (HDACs) are enzymes pivotal for histone modification (i.e. acetylation marks removal), chromatin accessibility and gene expression regulation. Class I HDACs (including HDAC1, 2, 3, 8) are ubiquitously expressed and they often participate in multi-molecular protein complexes. To date, three neurodevelopmental disorders caused by mutations in genes encoding for HDACs (HDAC4, HDAC6 and HDAC8) and thus belonging to the group of chromatinopathies, have been described. We performed whole exome sequencing (WES) for a patient (#249) clinically diagnosed with the chromatinopathy Rubinstein-Taybi syndrome (RSTS) but negative for mutations in RSTS genes, identifying a de novo frameshift variant in HDAC2 gene. We then investigated its molecular effects in lymphoblastoid cell lines (LCLs) derived from the patient compared to LCLs from healthy donors (HD). As the variant was predicted to be likely pathogenetic and to affect the sequence of nuclear localization signal, we performed immunocytochemistry and lysates fractionation, observing a nuclear mis-localization of HDAC2 compared to HD LCLs. In addition, HDAC2 total protein abundance resulted altered in patient, and we found that newly identified variant in HDAC2 affects also acetylation levels, with significant difference in acetylation pattern among patient #249, HD and RSTS cells and in expression of a known molecular target. Remarkably, RNA-seq performed on #249, HD and RSTS cells shows differentially expressed genes (DEGs) common to #249 and RSTS. Interestingly, our reported patient was clinically diagnosed with RSTS, a chromatinopathy which known causative genes encode for enzymes antagonizing HDACs. These results support the role of HDAC2 as causative gene for chromatinopathies, strengthening the genotype-phenotype correlations in this relevant group of disorders.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02675-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02675-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白去乙酰化酶(HDACs)是对组蛋白修饰(即乙酰化标记去除)、染色质可及性和基因表达调控起关键作用的酶。第一类 HDAC(包括 HDAC1、2、3 和 8)普遍表达,它们通常参与多分子蛋白质复合物。迄今为止,已描述了三种由 HDACs(HDAC4、HDAC6 和 HDAC8)编码基因突变引起的神经发育障碍,因此属于染色质病。我们对一名临床诊断为染色质病鲁宾斯坦-泰比综合征(RSTS)但 RSTS 基因突变阴性的患者(#249)进行了全外显子组测序(WES),发现了 HDAC2 基因中的一个从头框移位变体。我们随后研究了该变异在患者淋巴母细胞系(LCL)与健康供体淋巴母细胞系(HD)中的分子效应。由于预测该变异可能是致病性的,并且会影响核定位信号的序列,我们进行了免疫细胞化学和裂解物分馏,观察到与 HD LCLs 相比,HDAC2 存在核定位错误。此外,HDAC2 总蛋白丰度在患者中也发生了变化,我们发现新发现的 HDAC2 变异也影响乙酰化水平,249 号患者、HD 和 RSTS 细胞的乙酰化模式以及已知分子靶标的表达均存在显著差异。值得注意的是,对 #249、HD 和 RSTS 细胞进行的 RNA 序列分析表明,#249 和 RSTS 有共同的差异表达基因(DEGs)。有趣的是,我们报告的患者被临床诊断为 RSTS,这是一种染色质病,已知的致病基因编码拮抗 HDAC 的酶。这些结果支持了 HDAC2 作为染色质病变致病基因的作用,加强了这组相关疾病的基因型-表型相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of a novel HDAC2 pathogenetic variant: a missing puzzle piece for chromatinopathies.

Characterization of a novel HDAC2 pathogenetic variant: a missing puzzle piece for chromatinopathies.

Histone deacetylases (HDACs) are enzymes pivotal for histone modification (i.e. acetylation marks removal), chromatin accessibility and gene expression regulation. Class I HDACs (including HDAC1, 2, 3, 8) are ubiquitously expressed and they often participate in multi-molecular protein complexes. To date, three neurodevelopmental disorders caused by mutations in genes encoding for HDACs (HDAC4, HDAC6 and HDAC8) and thus belonging to the group of chromatinopathies, have been described. We performed whole exome sequencing (WES) for a patient (#249) clinically diagnosed with the chromatinopathy Rubinstein-Taybi syndrome (RSTS) but negative for mutations in RSTS genes, identifying a de novo frameshift variant in HDAC2 gene. We then investigated its molecular effects in lymphoblastoid cell lines (LCLs) derived from the patient compared to LCLs from healthy donors (HD). As the variant was predicted to be likely pathogenetic and to affect the sequence of nuclear localization signal, we performed immunocytochemistry and lysates fractionation, observing a nuclear mis-localization of HDAC2 compared to HD LCLs. In addition, HDAC2 total protein abundance resulted altered in patient, and we found that newly identified variant in HDAC2 affects also acetylation levels, with significant difference in acetylation pattern among patient #249, HD and RSTS cells and in expression of a known molecular target. Remarkably, RNA-seq performed on #249, HD and RSTS cells shows differentially expressed genes (DEGs) common to #249 and RSTS. Interestingly, our reported patient was clinically diagnosed with RSTS, a chromatinopathy which known causative genes encode for enzymes antagonizing HDACs. These results support the role of HDAC2 as causative gene for chromatinopathies, strengthening the genotype-phenotype correlations in this relevant group of disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信