Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, Erik Meijaard
{"title":"1990 至 2021 年全球油棕榈树种植年分布图","authors":"Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, Erik Meijaard","doi":"10.5194/essd-2024-157","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Oil palm is a controversial crop, primarily because it is associated with negative environmental impacts such as tropical deforestation. Mapping the crop and its characteristics, such as age, is crucial for informing public and policy discussions regarding these impacts. Oil palm has received substantial mapping efforts, but up-to-date accurate oil palm maps for both extent and age are essential for monitoring impacts and informing concomitant debate. Here, we present a 10-meter resolution global map of industrial and smallholder oil palm, developed using Sentinel-1 data for the years 2016–2021 and a deep learning model based on convolutional neural networks. In addition, we used Landsat-5, -7, and -8 to estimate the planting year from 1990 to 2021 at a 30-meter spatial resolution. The planting year indicates the year of establishment for an oil palm plantation as of 2021, either newly planted or replanted oil palm in an existing plantation. We validated the oil palm extent layer using 17,812 randomly distributed reference points. The accuracy of the planting year layer was assessed using field data collected from 5,831 industrial parcels and 1,012 smallholder plantations distributed throughout the oil palm growing area. We found oil palm plantations covering a total mapped area of 23.98 Mha, and our area estimates are 16.66 ± 0.25 Mha of industrial and 7.59 ± 0.29 Mha of smallholder oil palm worldwide. The producers’ and users’ accuracy is 91.9 ± 3.4 % and 91.8 ± 1.0 % for industrial plantations, and 72.7 ± 1.3 % and 75.7 ± 2.5 % for smallholders, which improves upon a previous global oil palm dataset, particularly in terms of omission of oil palm. The overall mean error between estimated planting year and field data was -0.24 years and the root-mean-square error was 2.65 years, but the agreement was lower for smallholders. Mapping the extent and planting year of smallholder plantations remains challenging, particularly for wild and sparsely planted oil palm, and future mapping efforts should focus on these specific types of plantations. The average oil palm plantation age was 14.1 years, and the area of oil palm over 20 years was 6.28 Mha. Given that oil palm plantations are typically replanted after 25 years, our findings indicate that this area will require replanting within the coming decade, starting from 2021. Our dataset provides valuable input for optimal land use planning to meet the growing global demand for vegetable oils. The global oil palm extent layer for the year 2021 and the planting year layer from 1990 to 2021 can be found at https://doi.org/10.5281/zenodo.11034131 (Descals, 2024).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global mapping of oil palm planting year from 1990 to 2021\",\"authors\":\"Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, Erik Meijaard\",\"doi\":\"10.5194/essd-2024-157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Oil palm is a controversial crop, primarily because it is associated with negative environmental impacts such as tropical deforestation. Mapping the crop and its characteristics, such as age, is crucial for informing public and policy discussions regarding these impacts. Oil palm has received substantial mapping efforts, but up-to-date accurate oil palm maps for both extent and age are essential for monitoring impacts and informing concomitant debate. Here, we present a 10-meter resolution global map of industrial and smallholder oil palm, developed using Sentinel-1 data for the years 2016–2021 and a deep learning model based on convolutional neural networks. In addition, we used Landsat-5, -7, and -8 to estimate the planting year from 1990 to 2021 at a 30-meter spatial resolution. The planting year indicates the year of establishment for an oil palm plantation as of 2021, either newly planted or replanted oil palm in an existing plantation. We validated the oil palm extent layer using 17,812 randomly distributed reference points. The accuracy of the planting year layer was assessed using field data collected from 5,831 industrial parcels and 1,012 smallholder plantations distributed throughout the oil palm growing area. We found oil palm plantations covering a total mapped area of 23.98 Mha, and our area estimates are 16.66 ± 0.25 Mha of industrial and 7.59 ± 0.29 Mha of smallholder oil palm worldwide. The producers’ and users’ accuracy is 91.9 ± 3.4 % and 91.8 ± 1.0 % for industrial plantations, and 72.7 ± 1.3 % and 75.7 ± 2.5 % for smallholders, which improves upon a previous global oil palm dataset, particularly in terms of omission of oil palm. The overall mean error between estimated planting year and field data was -0.24 years and the root-mean-square error was 2.65 years, but the agreement was lower for smallholders. Mapping the extent and planting year of smallholder plantations remains challenging, particularly for wild and sparsely planted oil palm, and future mapping efforts should focus on these specific types of plantations. The average oil palm plantation age was 14.1 years, and the area of oil palm over 20 years was 6.28 Mha. Given that oil palm plantations are typically replanted after 25 years, our findings indicate that this area will require replanting within the coming decade, starting from 2021. Our dataset provides valuable input for optimal land use planning to meet the growing global demand for vegetable oils. The global oil palm extent layer for the year 2021 and the planting year layer from 1990 to 2021 can be found at https://doi.org/10.5281/zenodo.11034131 (Descals, 2024).\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-157\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-157","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Global mapping of oil palm planting year from 1990 to 2021
Abstract. Oil palm is a controversial crop, primarily because it is associated with negative environmental impacts such as tropical deforestation. Mapping the crop and its characteristics, such as age, is crucial for informing public and policy discussions regarding these impacts. Oil palm has received substantial mapping efforts, but up-to-date accurate oil palm maps for both extent and age are essential for monitoring impacts and informing concomitant debate. Here, we present a 10-meter resolution global map of industrial and smallholder oil palm, developed using Sentinel-1 data for the years 2016–2021 and a deep learning model based on convolutional neural networks. In addition, we used Landsat-5, -7, and -8 to estimate the planting year from 1990 to 2021 at a 30-meter spatial resolution. The planting year indicates the year of establishment for an oil palm plantation as of 2021, either newly planted or replanted oil palm in an existing plantation. We validated the oil palm extent layer using 17,812 randomly distributed reference points. The accuracy of the planting year layer was assessed using field data collected from 5,831 industrial parcels and 1,012 smallholder plantations distributed throughout the oil palm growing area. We found oil palm plantations covering a total mapped area of 23.98 Mha, and our area estimates are 16.66 ± 0.25 Mha of industrial and 7.59 ± 0.29 Mha of smallholder oil palm worldwide. The producers’ and users’ accuracy is 91.9 ± 3.4 % and 91.8 ± 1.0 % for industrial plantations, and 72.7 ± 1.3 % and 75.7 ± 2.5 % for smallholders, which improves upon a previous global oil palm dataset, particularly in terms of omission of oil palm. The overall mean error between estimated planting year and field data was -0.24 years and the root-mean-square error was 2.65 years, but the agreement was lower for smallholders. Mapping the extent and planting year of smallholder plantations remains challenging, particularly for wild and sparsely planted oil palm, and future mapping efforts should focus on these specific types of plantations. The average oil palm plantation age was 14.1 years, and the area of oil palm over 20 years was 6.28 Mha. Given that oil palm plantations are typically replanted after 25 years, our findings indicate that this area will require replanting within the coming decade, starting from 2021. Our dataset provides valuable input for optimal land use planning to meet the growing global demand for vegetable oils. The global oil palm extent layer for the year 2021 and the planting year layer from 1990 to 2021 can be found at https://doi.org/10.5281/zenodo.11034131 (Descals, 2024).
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.