{"title":"莱维-福克-普朗克方程渐近保留方案的均匀误差估计","authors":"Weiran Sun, Li Wang","doi":"10.1090/mcom/3975","DOIUrl":null,"url":null,"abstract":"<p>We establish a uniform-in-scaling error estimate for the asymptotic preserving (AP) scheme proposed by Xu and Wang [Commun. Math. Sci. 21 (2023), pp. 1–23] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem not only from the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling parameter <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: in the regime where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"201 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation\",\"authors\":\"Weiran Sun, Li Wang\",\"doi\":\"10.1090/mcom/3975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a uniform-in-scaling error estimate for the asymptotic preserving (AP) scheme proposed by Xu and Wang [Commun. Math. Sci. 21 (2023), pp. 1–23] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem not only from the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling parameter <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon\\\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: in the regime where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon\\\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon\\\"> <mml:semantics> <mml:mi>ε</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3975\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3975","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation
We establish a uniform-in-scaling error estimate for the asymptotic preserving (AP) scheme proposed by Xu and Wang [Commun. Math. Sci. 21 (2023), pp. 1–23] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem not only from the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling parameter ε\varepsilon: in the regime where ε\varepsilon is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where ε\varepsilon is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.