利用皮卡尔迭代的局部径向基函数近似对小应变弹塑性变形进行数值分析

Filip Strniša, Mitja Jančič, Gregor Kosec
{"title":"利用皮卡尔迭代的局部径向基函数近似对小应变弹塑性变形进行数值分析","authors":"Filip Strniša, Mitja Jančič, Gregor Kosec","doi":"arxiv-2405.04970","DOIUrl":null,"url":null,"abstract":"This paper deals with a numerical analysis of plastic deformation under\nvarious conditions, utilizing Radial Basis Function (RBF) approximation. The\nfocus is on the elasto-plastic von Mises problem under plane-strain assumption.\nElastic deformation is modelled using the Navier-Cauchy equation. In regions\nwhere the von Mises stress surpasses the yield stress, corrections are applied\nlocally through a return mapping algorithm. The non-linear deformation problem\nin the plastic domain is solved using the Picard iteration. The solutions for the Navier-Cauchy equation are computed using the Radial\nBasis Function-Generated Finite Differences (RBF-FD) meshless method using only\nscattered nodes in a strong form. Verification of the method is performed\nthrough the analysis of an internally pressurized thick-walled cylinder\nsubjected to varying loading conditions. These conditions induce states of\nelastic expansion, perfectly-plastic yielding, and plastic yielding with linear\nhardening. The results are benchmarked against analytical solutions and\ntraditional Finite Element Method (FEM) solutions. The paper also showcases the\nrobustness of this approach by solving case of thick-walled cylinder with\ncut-outs. The results affirm that the RBF-FD method produces results comparable\nto those obtained through FEM, while offering substantial benefits in managing\ncomplex geometries without the necessity for conventional meshing, along with\nother benefits of meshless methods.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of small-strain elasto-plastic deformation using local Radial Basis Function approximation with Picard iteration\",\"authors\":\"Filip Strniša, Mitja Jančič, Gregor Kosec\",\"doi\":\"arxiv-2405.04970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a numerical analysis of plastic deformation under\\nvarious conditions, utilizing Radial Basis Function (RBF) approximation. The\\nfocus is on the elasto-plastic von Mises problem under plane-strain assumption.\\nElastic deformation is modelled using the Navier-Cauchy equation. In regions\\nwhere the von Mises stress surpasses the yield stress, corrections are applied\\nlocally through a return mapping algorithm. The non-linear deformation problem\\nin the plastic domain is solved using the Picard iteration. The solutions for the Navier-Cauchy equation are computed using the Radial\\nBasis Function-Generated Finite Differences (RBF-FD) meshless method using only\\nscattered nodes in a strong form. Verification of the method is performed\\nthrough the analysis of an internally pressurized thick-walled cylinder\\nsubjected to varying loading conditions. These conditions induce states of\\nelastic expansion, perfectly-plastic yielding, and plastic yielding with linear\\nhardening. The results are benchmarked against analytical solutions and\\ntraditional Finite Element Method (FEM) solutions. The paper also showcases the\\nrobustness of this approach by solving case of thick-walled cylinder with\\ncut-outs. The results affirm that the RBF-FD method produces results comparable\\nto those obtained through FEM, while offering substantial benefits in managing\\ncomplex geometries without the necessity for conventional meshing, along with\\nother benefits of meshless methods.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用径向基函数(RBF)近似法对复杂条件下的塑性变形进行了数值分析。重点是平面应变假设下的弹塑性 von Mises 问题。在 von Mises 应力超过屈服应力的区域,通过返回映射算法进行局部修正。塑性域的非线性变形问题采用 Picard 迭代法求解。Navier-Cauchy 方程的解使用径向基函数生成有限差分(RBF-FD)无网格方法计算,只使用强形式的散射节点。通过分析承受不同加载条件的内部加压厚壁圆柱体,对该方法进行了验证。这些条件引起了弹性膨胀、完全塑性屈服和线性硬化的塑性屈服状态。结果以分析解决方案和传统有限元法(FEM)解决方案为基准。论文还通过求解带切口的厚壁圆柱体案例,展示了这种方法的稳健性。结果证实,RBF-FD 方法得出的结果与有限元法得出的结果不相上下,同时在管理复杂几何图形方面具有显著优势,无需传统网格划分,同时还具有无网格方法的其他优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of small-strain elasto-plastic deformation using local Radial Basis Function approximation with Picard iteration
This paper deals with a numerical analysis of plastic deformation under various conditions, utilizing Radial Basis Function (RBF) approximation. The focus is on the elasto-plastic von Mises problem under plane-strain assumption. Elastic deformation is modelled using the Navier-Cauchy equation. In regions where the von Mises stress surpasses the yield stress, corrections are applied locally through a return mapping algorithm. The non-linear deformation problem in the plastic domain is solved using the Picard iteration. The solutions for the Navier-Cauchy equation are computed using the Radial Basis Function-Generated Finite Differences (RBF-FD) meshless method using only scattered nodes in a strong form. Verification of the method is performed through the analysis of an internally pressurized thick-walled cylinder subjected to varying loading conditions. These conditions induce states of elastic expansion, perfectly-plastic yielding, and plastic yielding with linear hardening. The results are benchmarked against analytical solutions and traditional Finite Element Method (FEM) solutions. The paper also showcases the robustness of this approach by solving case of thick-walled cylinder with cut-outs. The results affirm that the RBF-FD method produces results comparable to those obtained through FEM, while offering substantial benefits in managing complex geometries without the necessity for conventional meshing, along with other benefits of meshless methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信