{"title":"针对异常值和结构性噪声的基于加权信息熵的卡尔曼滤波器","authors":"Haiping Ma, Jiuyi Yao, Jiyuan Huang, Zheheng Jiang","doi":"10.1002/asjc.3402","DOIUrl":null,"url":null,"abstract":"<p>Structural noise and outliers are widely present in real-world state estimate scenarios, and they significantly degrade the performance of most filtering algorithms based on minimum mean square error (MMSE) criterion. To address this problem, this paper first models structural noise and outliers as independent and piecewise identical distribution (IPID). Then, a minimum error weighted entropy-based Kalman filter (MEWE-KF) is proposed, where a new cost function is constructed by introducing a weight function related to error location distances in an original information space into the minimum error entropy (MEE) criterion. Further, the iterative formulations of the proposed filter are derived, and the computational complexity and the convergence are also analyzed. Simulation results show that the proposed filter with adaptive weights has the superior performance for suppressing structural noise and outliers.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"26 6","pages":"3264-3274"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted information entropy-based Kalman filter for outliers and structural noise\",\"authors\":\"Haiping Ma, Jiuyi Yao, Jiyuan Huang, Zheheng Jiang\",\"doi\":\"10.1002/asjc.3402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural noise and outliers are widely present in real-world state estimate scenarios, and they significantly degrade the performance of most filtering algorithms based on minimum mean square error (MMSE) criterion. To address this problem, this paper first models structural noise and outliers as independent and piecewise identical distribution (IPID). Then, a minimum error weighted entropy-based Kalman filter (MEWE-KF) is proposed, where a new cost function is constructed by introducing a weight function related to error location distances in an original information space into the minimum error entropy (MEE) criterion. Further, the iterative formulations of the proposed filter are derived, and the computational complexity and the convergence are also analyzed. Simulation results show that the proposed filter with adaptive weights has the superior performance for suppressing structural noise and outliers.</p>\",\"PeriodicalId\":55453,\"journal\":{\"name\":\"Asian Journal of Control\",\"volume\":\"26 6\",\"pages\":\"3264-3274\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3402\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3402","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Weighted information entropy-based Kalman filter for outliers and structural noise
Structural noise and outliers are widely present in real-world state estimate scenarios, and they significantly degrade the performance of most filtering algorithms based on minimum mean square error (MMSE) criterion. To address this problem, this paper first models structural noise and outliers as independent and piecewise identical distribution (IPID). Then, a minimum error weighted entropy-based Kalman filter (MEWE-KF) is proposed, where a new cost function is constructed by introducing a weight function related to error location distances in an original information space into the minimum error entropy (MEE) criterion. Further, the iterative formulations of the proposed filter are derived, and the computational complexity and the convergence are also analyzed. Simulation results show that the proposed filter with adaptive weights has the superior performance for suppressing structural noise and outliers.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.