$$\mathbb {R}$$ 中分数 Choquard 系统的归一化基态

Wenjing Chen, Zexi Wang
{"title":"$$\\mathbb {R}$$ 中分数 Choquard 系统的归一化基态","authors":"Wenjing Chen, Zexi Wang","doi":"10.1007/s12220-024-01629-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the following fractional Choquard system </p><span>$$\\begin{aligned} \\begin{aligned} \\left\\{ \\begin{array}{ll} (-\\Delta )^{1/2}u=\\lambda _1 u+(I_\\mu *F(u,v))F_u (u,v), \\quad \\text{ in }\\ \\ \\mathbb {R}, \\\\ (-\\Delta )^{1/2}v=\\lambda _2 v+(I_\\mu *F(u,v)) F_v(u,v), \\quad \\text{ in }\\ \\ \\mathbb {R}, \\\\ \\displaystyle \\int _{\\mathbb {R}}|u|^2\\textrm{d}x=a^2,\\quad \\displaystyle \\int _{\\mathbb {R}}|v|^2\\textrm{d}x=b^2,\\quad u,v\\in H^{1/2}(\\mathbb {R}), \\end{array} \\right. \\end{aligned} \\end{aligned}$$</span><p>where <span>\\((-\\Delta )^{1/2}\\)</span> denotes the 1/2-Laplacian operator, <span>\\(a,b&gt;0\\)</span> are prescribed, <span>\\(\\lambda _1,\\lambda _2\\in \\mathbb {R}\\)</span>, <span>\\(I_\\mu (x)=\\frac{{1}}{{|x|^\\mu }}\\)</span> with <span>\\(\\mu \\in (0,1)\\)</span>, <span>\\(F_u,F_v\\)</span> are partial derivatives of <i>F</i> and <span>\\(F_u,F_v\\)</span> have exponential critical growth in <span>\\(\\mathbb {R}\\)</span>. By using a minimax principle and analyzing the monotonicity of the ground state energy with respect to the prescribed masses, we obtain at least one normalized ground state solution for the above system.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Ground States for a Fractional Choquard System in $$\\\\mathbb {R}$$\",\"authors\":\"Wenjing Chen, Zexi Wang\",\"doi\":\"10.1007/s12220-024-01629-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the following fractional Choquard system </p><span>$$\\\\begin{aligned} \\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} (-\\\\Delta )^{1/2}u=\\\\lambda _1 u+(I_\\\\mu *F(u,v))F_u (u,v), \\\\quad \\\\text{ in }\\\\ \\\\ \\\\mathbb {R}, \\\\\\\\ (-\\\\Delta )^{1/2}v=\\\\lambda _2 v+(I_\\\\mu *F(u,v)) F_v(u,v), \\\\quad \\\\text{ in }\\\\ \\\\ \\\\mathbb {R}, \\\\\\\\ \\\\displaystyle \\\\int _{\\\\mathbb {R}}|u|^2\\\\textrm{d}x=a^2,\\\\quad \\\\displaystyle \\\\int _{\\\\mathbb {R}}|v|^2\\\\textrm{d}x=b^2,\\\\quad u,v\\\\in H^{1/2}(\\\\mathbb {R}), \\\\end{array} \\\\right. \\\\end{aligned} \\\\end{aligned}$$</span><p>where <span>\\\\((-\\\\Delta )^{1/2}\\\\)</span> denotes the 1/2-Laplacian operator, <span>\\\\(a,b&gt;0\\\\)</span> are prescribed, <span>\\\\(\\\\lambda _1,\\\\lambda _2\\\\in \\\\mathbb {R}\\\\)</span>, <span>\\\\(I_\\\\mu (x)=\\\\frac{{1}}{{|x|^\\\\mu }}\\\\)</span> with <span>\\\\(\\\\mu \\\\in (0,1)\\\\)</span>, <span>\\\\(F_u,F_v\\\\)</span> are partial derivatives of <i>F</i> and <span>\\\\(F_u,F_v\\\\)</span> have exponential critical growth in <span>\\\\(\\\\mathbb {R}\\\\)</span>. By using a minimax principle and analyzing the monotonicity of the ground state energy with respect to the prescribed masses, we obtain at least one normalized ground state solution for the above system.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01629-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01629-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究以下分数 Choquard 系统 $$\begin{aligned}\开始\(-\Delta )^{1/2}u=\lambda _1 u+(I_\mu *F(u,v))F_u (u,v), \quad \text{ in }\\mathbb {R}, \ (-\Delta )^{1/2}v=\lambda _2 v+(I_\mu *F(u,v))F_v(u,v), \quad \text{ in }\\ \mathbb {R}, \\displaystyle int _{\mathbb {R}}|u|^2\textrm{d}x=a^2、\quad \displaystyle \int _{mathbb {R}}|v|^2\textrm{d}x=b^2,\quad u,v\in H^{1/2}(\mathbb {R}),\end{array}.\right.\end{aligned}\end{aligned}$$其中 \((-\Delta )^{1/2}\) 表示 1/2 拉普拉斯算子,\(a,b>;0)都是规定的,((lambda _1,lambda _2在 (mathbb {R})中),(I_\mu (x)=\frac{{1}}{{{x|^\mu }}) with (\mu 在 (0、1)),\(F_u,F_v\)是 F 的偏导数,并且\(F_u,F_v\)在\(\mathbb {R}\)中有指数临界增长。通过使用最小原理和分析基态能量相对于规定质量的单调性,我们得到了上述系统的至少一个归一化基态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized Ground States for a Fractional Choquard System in $$\mathbb {R}$$

In this paper, we study the following fractional Choquard system

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{1/2}u=\lambda _1 u+(I_\mu *F(u,v))F_u (u,v), \quad \text{ in }\ \ \mathbb {R}, \\ (-\Delta )^{1/2}v=\lambda _2 v+(I_\mu *F(u,v)) F_v(u,v), \quad \text{ in }\ \ \mathbb {R}, \\ \displaystyle \int _{\mathbb {R}}|u|^2\textrm{d}x=a^2,\quad \displaystyle \int _{\mathbb {R}}|v|^2\textrm{d}x=b^2,\quad u,v\in H^{1/2}(\mathbb {R}), \end{array} \right. \end{aligned} \end{aligned}$$

where \((-\Delta )^{1/2}\) denotes the 1/2-Laplacian operator, \(a,b>0\) are prescribed, \(\lambda _1,\lambda _2\in \mathbb {R}\), \(I_\mu (x)=\frac{{1}}{{|x|^\mu }}\) with \(\mu \in (0,1)\), \(F_u,F_v\) are partial derivatives of F and \(F_u,F_v\) have exponential critical growth in \(\mathbb {R}\). By using a minimax principle and analyzing the monotonicity of the ground state energy with respect to the prescribed masses, we obtain at least one normalized ground state solution for the above system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信