具有衰变和振荡势的离散薛定谔算子

IF 0.7 4区 数学 Q2 MATHEMATICS
R. Frank, S. Larson
{"title":"具有衰变和振荡势的离散薛定谔算子","authors":"R. Frank, S. Larson","doi":"10.1090/spmj/1803","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis n right-parenthesis equals lamda n Superscript negative alpha Baseline cosine left-parenthesis pi omega n Superscript beta Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mi>cos</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ω<!-- ω --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V(n)=\\lambda n^{-\\alpha }\\cos (\\pi \\omega n^\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than beta greater-than 2 alpha\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1&gt;\\beta &gt;2\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Schrödinger operators with decaying and oscillating potentials\",\"authors\":\"R. Frank, S. Larson\",\"doi\":\"10.1090/spmj/1803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V left-parenthesis n right-parenthesis equals lamda n Superscript negative alpha Baseline cosine left-parenthesis pi omega n Superscript beta Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mi>cos</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ω<!-- ω --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V(n)=\\\\lambda n^{-\\\\alpha }\\\\cos (\\\\pi \\\\omega n^\\\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 greater-than beta greater-than 2 alpha\\\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">1&gt;\\\\beta &gt;2\\\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1803\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1803","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要讨论了具有快速振荡的幂级数衰变势的离散一维薛定谔算子族。特别是,对于 1 > β > 2 α 1>\beta >2\alpha 的势 V ( n ) = λ n - α cos ( π ω n β ) V(n)=\lambda n^{-\alpha }cos (\pi \omega n^\beta ) ,证明了其频谱在拉普拉卡频谱上是纯粹绝对连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Schrödinger operators with decaying and oscillating potentials

The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential V ( n ) = λ n α cos ( π ω n β ) V(n)=\lambda n^{-\alpha }\cos (\pi \omega n^\beta ) with 1 > β > 2 α 1>\beta >2\alpha , it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信