R. Frank, S. Larson
求助PDF
{"title":"具有衰变和振荡势的离散薛定谔算子","authors":"R. Frank, S. Larson","doi":"10.1090/spmj/1803","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis n right-parenthesis equals lamda n Superscript negative alpha Baseline cosine left-parenthesis pi omega n Superscript beta Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mi>cos</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ω<!-- ω --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V(n)=\\lambda n^{-\\alpha }\\cos (\\pi \\omega n^\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than beta greater-than 2 alpha\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1>\\beta >2\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Schrödinger operators with decaying and oscillating potentials\",\"authors\":\"R. Frank, S. Larson\",\"doi\":\"10.1090/spmj/1803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper V left-parenthesis n right-parenthesis equals lamda n Superscript negative alpha Baseline cosine left-parenthesis pi omega n Superscript beta Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mi>cos</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ω<!-- ω --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">V(n)=\\\\lambda n^{-\\\\alpha }\\\\cos (\\\\pi \\\\omega n^\\\\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1 greater-than beta greater-than 2 alpha\\\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">1>\\\\beta >2\\\\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1803\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1803","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用