沃尔夫方程正解的求和性和渐近性

IF 0.6 4区 数学 Q3 MATHEMATICS
CHUNHONG LI, YUTIAN LEI
{"title":"沃尔夫方程正解的求和性和渐近性","authors":"CHUNHONG LI, YUTIAN LEI","doi":"10.1017/s0004972724000364","DOIUrl":null,"url":null,"abstract":"<p>We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*} w(i)=W_{\\beta,\\gamma}(w^q)(i), \\quad i \\in \\mathbb{Z}^n. \\end{align*} $$</span></span></img></span></p><p>Here, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$n \\geq 1$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\min \\{q,\\beta \\}&gt;0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$1&lt;\\gamma \\leq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\beta \\gamma &lt;n$</span></span></img></span></span>. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$w(i)$</span></span></img></span></span> when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$|i| \\to \\infty $</span></span></img></span></span>.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUMMABILITY AND ASYMPTOTICS OF POSITIVE SOLUTIONS OF AN EQUATION OF WOLFF TYPE\",\"authors\":\"CHUNHONG LI, YUTIAN LEI\",\"doi\":\"10.1017/s0004972724000364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*} w(i)=W_{\\\\beta,\\\\gamma}(w^q)(i), \\\\quad i \\\\in \\\\mathbb{Z}^n. \\\\end{align*} $$</span></span></img></span></p><p>Here, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n \\\\geq 1$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\min \\\\{q,\\\\beta \\\\}&gt;0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1&lt;\\\\gamma \\\\leq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\beta \\\\gamma &lt;n$</span></span></img></span></span>. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$w(i)$</span></span></img></span></span> when <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240514060414573-0998:S0004972724000364:S0004972724000364_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$|i| \\\\to \\\\infty $</span></span></img></span></span>.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000364\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用势分析来研究离散的沃尔夫型方程 $$ 的正解的性质: w(i)=W_{\beta,\gamma}(w^q)(i), \quad i \in \mathbb{Z}^n.\end{align*}$$Here, $n \geq 1$, $\min \{q,\beta \}>0$, $1<\gamma \leq 2$ and $\beta \gamma <n$.这样的方程可以用来研究晶格、神经网络和其他离散模型研究中出现的图形上的非线性问题。我们利用正则性提升的方法获得了方程正解的最优求和性。根据这一结果,我们得到了当 $|i| \to \infty $ 时 $w(i)$ 的衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUMMABILITY AND ASYMPTOTICS OF POSITIVE SOLUTIONS OF AN EQUATION OF WOLFF TYPE

We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation $$ \begin{align*} w(i)=W_{\beta,\gamma}(w^q)(i), \quad i \in \mathbb{Z}^n. \end{align*} $$

Here, $n \geq 1$, $\min \{q,\beta \}>0$, $1<\gamma \leq 2$ and $\beta \gamma <n$. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of $w(i)$ when $|i| \to \infty $.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信