论带自循环图的谱半径和能量

4区 工程技术 Q1 Mathematics
Deekshitha Vivek Anchan, Gowtham H. J., Sabitha D’Souza
{"title":"论带自循环图的谱半径和能量","authors":"Deekshitha Vivek Anchan, Gowtham H. J., Sabitha D’Souza","doi":"10.1155/2024/7056478","DOIUrl":null,"url":null,"abstract":"The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops <svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 32.027 12.5794\" width=\"32.027pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.135,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,13.633,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,22.46,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.324,0)\"></path></g></svg> will be explored. Specifically, it discusses the nontrivial existence of Perron–Frobenius eigenvalue and eigenvector pair in the matrix <span><svg height=\"24.0833pt\" style=\"vertical-align:-9.4319pt\" version=\"1.1\" viewbox=\"-0.0498162 -14.6514 60.846 24.0833\" width=\"60.846pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,9.135,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.633,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,22.46,3.132)\"><use xlink:href=\"#g50-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.324,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.728,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,46.46,-8.508)\"></path></g><rect height=\"0.65243\" width=\"7.37255\" x=\"46.4596\" y=\"-3.65364\"></rect><g transform=\"matrix(.013,0,0,-0.013,46.871,9.225)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,55.028,0)\"></path></g></svg>,</span> where <svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-240\"></use></g></svg> denotes the number of self-loops. Also, Koolen–Moulton type bound for the energy of graph <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.824 11.927\" width=\"13.824pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.827,3.132)\"><use xlink:href=\"#g50-84\"></use></g></svg> is explored. In addition, the existence of a graph with self-loops for every odd energy is proved.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Spectral Radius and Energy of a Graph with Self-Loops\",\"authors\":\"Deekshitha Vivek Anchan, Gowtham H. J., Sabitha D’Souza\",\"doi\":\"10.1155/2024/7056478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops <svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 32.027 12.5794\\\" width=\\\"32.027pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.135,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,13.633,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,22.46,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.324,0)\\\"></path></g></svg> will be explored. Specifically, it discusses the nontrivial existence of Perron–Frobenius eigenvalue and eigenvector pair in the matrix <span><svg height=\\\"24.0833pt\\\" style=\\\"vertical-align:-9.4319pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -14.6514 60.846 24.0833\\\" width=\\\"60.846pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,9.135,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,13.633,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,22.46,3.132)\\\"><use xlink:href=\\\"#g50-84\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,27.324,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,34.728,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,46.46,-8.508)\\\"></path></g><rect height=\\\"0.65243\\\" width=\\\"7.37255\\\" x=\\\"46.4596\\\" y=\\\"-3.65364\\\"></rect><g transform=\\\"matrix(.013,0,0,-0.013,46.871,9.225)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,55.028,0)\\\"></path></g></svg>,</span> where <svg height=\\\"6.34998pt\\\" style=\\\"vertical-align:-0.2063899pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -6.14359 7.47218 6.34998\\\" width=\\\"7.47218pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-240\\\"></use></g></svg> denotes the number of self-loops. Also, Koolen–Moulton type bound for the energy of graph <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.824 11.927\\\" width=\\\"13.824pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.827,3.132)\\\"><use xlink:href=\\\"#g50-84\\\"></use></g></svg> is explored. In addition, the existence of a graph with self-loops for every odd energy is proved.\",\"PeriodicalId\":18319,\"journal\":{\"name\":\"Mathematical Problems in Engineering\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Problems in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7056478\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7056478","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

方阵的谱半径是其特征值绝对值的最大值。假设一个正方形矩阵是非负矩阵,那么根据 Perron-Frobenius 理论,该矩阵的特征值将是其特征值中的一个。本文将探讨有自循环图的邻接矩阵的 Perron-Frobenius 理论。具体来说,本文将讨论矩阵中的 Perron-Frobenius 特征值和特征向量对的非偶数存在性,其中,Perron-Frobenius 表示自循环的数量。同时,还探讨了图的能量的 Koolen-Moulton 类型约束。此外,还证明了在每个奇数能量下都存在具有自循环的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Spectral Radius and Energy of a Graph with Self-Loops
The spectral radius of a square matrix is the maximum among absolute values of its eigenvalues. Suppose a square matrix is nonnegative; then, by Perron–Frobenius theory, it will be one among its eigenvalues. In this paper, Perron–Frobenius theory for adjacency matrix of graph with self-loops will be explored. Specifically, it discusses the nontrivial existence of Perron–Frobenius eigenvalue and eigenvector pair in the matrix , where denotes the number of self-loops. Also, Koolen–Moulton type bound for the energy of graph is explored. In addition, the existence of a graph with self-loops for every odd energy is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Problems in Engineering
Mathematical Problems in Engineering 工程技术-工程:综合
CiteScore
4.00
自引率
0.00%
发文量
2853
审稿时长
4.2 months
期刊介绍: Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信