NH3 和 O3 的热氧化反应:含 NH4+ 盐的低温形成

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
Patrick D. Tribbett, Mark J. Loeffler
{"title":"NH3 和 O3 的热氧化反应:含 NH4+ 盐的低温形成","authors":"Patrick D. Tribbett, Mark J. Loeffler","doi":"10.3847/psj/ad394a","DOIUrl":null,"url":null,"abstract":"NH<sub>3</sub> has long been predicted to be an important component of outer solar system bodies, yet detection of this compound suggests a low abundance or absence on many objects where it would be expected. Here, we demonstrate that a thermally driven oxidation reaction between ammonia (NH<sub>3</sub>) and ozone (O<sub>3</sub>) in a H<sub>2</sub>O + NH<sub>3</sub> + O<sub>3</sub> mixture may contribute to the low abundance of NH<sub>3</sub> on some of these objects, as this reaction efficiently occurs at temperatures as low as 70 K. We determined the overall activation energy for this reaction to be 17 ± 2 kJ mol<sup>−1</sup>, which is consistent with other chemical systems that react at cryogenic temperatures. The loss of these two compounds coincides with the formation of <inline-formula>\n<tex-math>\n<?CDATA ${\\mathrm{NH}}_{4}^{+}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>NH</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad394aieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math>\n<?CDATA ${\\mathrm{NO}}_{3}^{-}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mi>NO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"psjad394aieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> at low temperatures, both of which are observable with infrared spectroscopy. Warming our H<sub>2</sub>O + NH<sub>3</sub> + O<sub>3</sub> mixtures through sublimation, we find a number of higher-temperature phases, such as ammonia hemihydrate, nitric acid, and ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>). The most stable of these is NH<sub>4</sub>NO<sub>3</sub>, which remains on the substrate until temperatures near 270 K. The salt product within this sample contains near-infrared spectral features between 2.0 and 2.22 <italic toggle=\"yes\">μ</italic>m, which is a spectral region of interest for several outer solar system objects, including the Uranian satellites Miranda, Ariel and Umbriel, and Pluto's satellite Charon.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"16 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Oxidation Reaction between NH3 and O3: Low-temperature Formation of an NH4+ -bearing Salt\",\"authors\":\"Patrick D. Tribbett, Mark J. Loeffler\",\"doi\":\"10.3847/psj/ad394a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NH<sub>3</sub> has long been predicted to be an important component of outer solar system bodies, yet detection of this compound suggests a low abundance or absence on many objects where it would be expected. Here, we demonstrate that a thermally driven oxidation reaction between ammonia (NH<sub>3</sub>) and ozone (O<sub>3</sub>) in a H<sub>2</sub>O + NH<sub>3</sub> + O<sub>3</sub> mixture may contribute to the low abundance of NH<sub>3</sub> on some of these objects, as this reaction efficiently occurs at temperatures as low as 70 K. We determined the overall activation energy for this reaction to be 17 ± 2 kJ mol<sup>−1</sup>, which is consistent with other chemical systems that react at cryogenic temperatures. The loss of these two compounds coincides with the formation of <inline-formula>\\n<tex-math>\\n<?CDATA ${\\\\mathrm{NH}}_{4}^{+}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mi>NH</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"psjad394aieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math>\\n<?CDATA ${\\\\mathrm{NO}}_{3}^{-}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msubsup><mml:mrow><mml:mi>NO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msubsup></mml:math>\\n<inline-graphic xlink:href=\\\"psjad394aieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> at low temperatures, both of which are observable with infrared spectroscopy. Warming our H<sub>2</sub>O + NH<sub>3</sub> + O<sub>3</sub> mixtures through sublimation, we find a number of higher-temperature phases, such as ammonia hemihydrate, nitric acid, and ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>). The most stable of these is NH<sub>4</sub>NO<sub>3</sub>, which remains on the substrate until temperatures near 270 K. The salt product within this sample contains near-infrared spectral features between 2.0 and 2.22 <italic toggle=\\\"yes\\\">μ</italic>m, which is a spectral region of interest for several outer solar system objects, including the Uranian satellites Miranda, Ariel and Umbriel, and Pluto's satellite Charon.\",\"PeriodicalId\":34524,\"journal\":{\"name\":\"The Planetary Science Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Planetary Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/psj/ad394a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad394a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,人们一直预测 NH3 是外太阳系天体的重要组成部分,但对这种化合物的探测表明,在许多天体上,NH3 的丰度很低,甚至不存在。在这里,我们证明了在 H2O + NH3 + O3 混合物中,氨(NH3)和臭氧(O3)之间的热驱动氧化反应可能是其中一些天体上 NH3 丰度低的原因,因为这种反应在低至 70 K 的温度下有效发生。这两种化合物的损失与 NH4+ 和 NO3- 在低温下的形成相吻合,这两种物质都可以通过红外光谱观察到。通过升华加热 H2O + NH3 + O3 混合物,我们会发现一些温度较高的物相,如半水氨、硝酸和硝酸铵(NH4NO3)。该样本中的盐产物包含 2.0 至 2.22 μm 的近红外光谱特征,这是几个外太阳系天体感兴趣的光谱区域,包括天王星卫星米兰达、阿瑞尔和翁布里尔,以及冥王星卫星卡戎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Oxidation Reaction between NH3 and O3: Low-temperature Formation of an NH4+ -bearing Salt
NH3 has long been predicted to be an important component of outer solar system bodies, yet detection of this compound suggests a low abundance or absence on many objects where it would be expected. Here, we demonstrate that a thermally driven oxidation reaction between ammonia (NH3) and ozone (O3) in a H2O + NH3 + O3 mixture may contribute to the low abundance of NH3 on some of these objects, as this reaction efficiently occurs at temperatures as low as 70 K. We determined the overall activation energy for this reaction to be 17 ± 2 kJ mol−1, which is consistent with other chemical systems that react at cryogenic temperatures. The loss of these two compounds coincides with the formation of NH4+ and NO3 at low temperatures, both of which are observable with infrared spectroscopy. Warming our H2O + NH3 + O3 mixtures through sublimation, we find a number of higher-temperature phases, such as ammonia hemihydrate, nitric acid, and ammonium nitrate (NH4NO3). The most stable of these is NH4NO3, which remains on the substrate until temperatures near 270 K. The salt product within this sample contains near-infrared spectral features between 2.0 and 2.22 μm, which is a spectral region of interest for several outer solar system objects, including the Uranian satellites Miranda, Ariel and Umbriel, and Pluto's satellite Charon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信