Markus Land, Akhil Mathew, Lennart Meier, Georg Tamme
{"title":"染色局部代数理论的纯粹性","authors":"Markus Land, Akhil Mathew, Lennart Meier, Georg Tamme","doi":"10.1090/jams/1043","DOIUrl":null,"url":null,"abstract":"<p>We prove a purity property in telescopically localized algebraic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory of ring spectra: For <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> only depends on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis 0 right-parenthesis circled-plus midline-horizontal-ellipsis circled-plus upper T left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(0)\\oplus \\dots \\oplus T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This complements a classical result of Waldhausen in rational <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript upper T left-parenthesis n right-parenthesis Baseline upper K left-parenthesis upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msub> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L_{T(n)}K(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in fact only depends on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis n minus 1 right-parenthesis circled-plus upper T left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(n-1)\\oplus T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, again for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 1\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n \\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As consequences, we deduce several vanishing results for telescopically localized <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory, as well as an equivalence between <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T upper C left-parenthesis tau Subscript greater-than-or-equal-to 0 Baseline upper R right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mi>C</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mi>R</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">TC(\\tau _{\\geq 0} R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> after <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"246 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purity in chromatically localized algebraic 𝐾-theory\",\"authors\":\"Markus Land, Akhil Mathew, Lennart Meier, Georg Tamme\",\"doi\":\"10.1090/jams/1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a purity property in telescopically localized algebraic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory of ring spectra: For <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K left-parenthesis upper R right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">K(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> only depends on the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T left-parenthesis 0 right-parenthesis circled-plus midline-horizontal-ellipsis circled-plus upper T left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T(0)\\\\oplus \\\\dots \\\\oplus T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This complements a classical result of Waldhausen in rational <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Subscript upper T left-parenthesis n right-parenthesis Baseline upper K left-parenthesis upper R right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msub> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">L_{T(n)}K(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in fact only depends on the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T left-parenthesis n minus 1 right-parenthesis circled-plus upper T left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T(n-1)\\\\oplus T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, again for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n \\\\geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As consequences, we deduce several vanishing results for telescopically localized <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K\\\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory, as well as an equivalence between <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K left-parenthesis upper R right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">K(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T upper C left-parenthesis tau Subscript greater-than-or-equal-to 0 Baseline upper R right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mi>C</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>τ<!-- τ --></mml:mi> <mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mi>R</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">TC(\\\\tau _{\\\\geq 0} R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> after <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">T(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-localization for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"246 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1043\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/1043","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了环谱的望远镜局部化代数 K K 理论的一个纯粹性:对于 n ≥ 1 n\geq 1,K ( R ) K(R) 的 T ( n ) T(n) 局部化只取决于 R R 的 T ( 0 ) ⊕ ⋯ ⊕ T ( n ) T(0)\oplus \dots \oplus T(n) 局部化。这补充了瓦尔德豪森(Waldhausen)在有理 K K 理论中的一个经典结果。把我们的结果与克劳森-马修-瑙曼-诺尔的研究结合起来,我们会发现 L T ( n ) K ( R ) L_{T(n)}K(R) 事实上只取决于 T ( n - 1 ) ⊕ T ( n ) T(n-1)\oplus T(n) -localization of R R,同样是 n ≥ 1 n \geq 1。作为结果,我们推导出望远镜局部化 K K 理论的几个消失结果,以及 K ( R ) K(R) 和 T C ( τ ≥ 0 R ) TC(\tau _{\geq 0} R) 在 n ≥ 2 n\geq 2 时 T ( n ) T(n) 局部化之后的等价性。
Purity in chromatically localized algebraic 𝐾-theory
We prove a purity property in telescopically localized algebraic KK-theory of ring spectra: For n≥1n\geq 1, the T(n)T(n)-localization of K(R)K(R) only depends on the T(0)⊕⋯⊕T(n)T(0)\oplus \dots \oplus T(n)-localization of RR. This complements a classical result of Waldhausen in rational KK-theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that LT(n)K(R)L_{T(n)}K(R) in fact only depends on the T(n−1)⊕T(n)T(n-1)\oplus T(n)-localization of RR, again for n≥1n \geq 1. As consequences, we deduce several vanishing results for telescopically localized KK-theory, as well as an equivalence between K(R)K(R) and TC(τ≥0R)TC(\tau _{\geq 0} R) after T(n)T(n)-localization for n≥2n\geq 2.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.