论 p$-adic 几何中向量束的某些扩展

IF 0.6 3区 数学 Q3 MATHEMATICS
Serin Hong
{"title":"论 p$-adic 几何中向量束的某些扩展","authors":"Serin Hong","doi":"10.4310/mrl.2023.v30.n5.a6","DOIUrl":null,"url":null,"abstract":"Given two arbitrary vector bundles on the Fargues–Fontaine curve, we give an explicit criterion in terms of Harder–Narasimhan polygons on whether they realize a semistable vector bundle as their extensions. Our argument is largely combinatorial and builds upon the dimension analysis of certain moduli spaces of bundle maps developed in $\\href{https://doi.org/10.1017/S1474748020000183}{[1]}$.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"28 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain extensions of vector bundles in $p$-adic geometry\",\"authors\":\"Serin Hong\",\"doi\":\"10.4310/mrl.2023.v30.n5.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two arbitrary vector bundles on the Fargues–Fontaine curve, we give an explicit criterion in terms of Harder–Narasimhan polygons on whether they realize a semistable vector bundle as their extensions. Our argument is largely combinatorial and builds upon the dimension analysis of certain moduli spaces of bundle maps developed in $\\\\href{https://doi.org/10.1017/S1474748020000183}{[1]}$.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n5.a6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定法尔古斯-方丹曲线上的两个任意向量束,我们用哈尔德-纳拉西姆汉多边形给出了一个明确的判据,判定它们是否实现了作为其扩展的半稳向量束。我们的论证主要是组合性的,建立在$\href{https://doi.org/10.1017/S1474748020000183}{[1]}$中对某些束映射模空间的维度分析之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On certain extensions of vector bundles in $p$-adic geometry
Given two arbitrary vector bundles on the Fargues–Fontaine curve, we give an explicit criterion in terms of Harder–Narasimhan polygons on whether they realize a semistable vector bundle as their extensions. Our argument is largely combinatorial and builds upon the dimension analysis of certain moduli spaces of bundle maps developed in $\href{https://doi.org/10.1017/S1474748020000183}{[1]}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信