{"title":"贝叶斯分层广义线性回归模型的近似推论","authors":"Brandon Berman, Wesley O. Johnson, Weining Shen","doi":"10.1111/anzs.12412","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Generalised linear mixed regression models are fundamental in statistics. Modelling random effects that are shared by individuals allows for correlation among those individuals. There are many methods and statistical packages available for analysing data using these models. Most require some form of numerical or analytic approximation because the likelihood function generally involves intractable integrals over the latents. The Bayesian approach avoids this issue by iteratively sampling the full conditional distributions for various blocks of parameters and latent random effects. Depending on the choice of the prior, some full conditionals are recognisable while others are not. In this paper we develop a novel normal approximation for the random effects full conditional, establish its asymptotic correctness and evaluate how well it performs. We make the case for hierarchical binomial and Poisson regression models with canonical link functions, for hierarchical gamma regression models with log link and for other cases. We also develop what we term a sufficient reduction (SR) approach to the Markov Chain Monte Carlo algorithm that allows for making inferences about all model parameters by replacing the full conditional for the latent variables with a considerably reduced dimensional function of the latents. We expect that this approximation could be quite useful in situations where there are a very large number of latent effects, which may be occurring in an increasingly ‘Big Data’ world. In the sequel, we compare our methods with INLA, which is a particularly popular method and which has been shown to be excellent in terms of speed and accuracy across a variety of settings. Our methods appear to be comparable to theirs in terms of accuracy, while INLA was faster, for the settings we considered. In addition, we note that our methods and those of others that involve Gibbs sampling trivially handle parameters that are functions of multiple parameters, while INLA approximations do not. Our primary illustration is for a three-level hierarchical binomial regression model for data on health outcomes for patients who are clustered within physicians who are clustered within particular hospitals or hospital systems.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 2","pages":"163-203"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate inferences for Bayesian hierarchical generalised linear regression models\",\"authors\":\"Brandon Berman, Wesley O. Johnson, Weining Shen\",\"doi\":\"10.1111/anzs.12412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Generalised linear mixed regression models are fundamental in statistics. Modelling random effects that are shared by individuals allows for correlation among those individuals. There are many methods and statistical packages available for analysing data using these models. Most require some form of numerical or analytic approximation because the likelihood function generally involves intractable integrals over the latents. The Bayesian approach avoids this issue by iteratively sampling the full conditional distributions for various blocks of parameters and latent random effects. Depending on the choice of the prior, some full conditionals are recognisable while others are not. In this paper we develop a novel normal approximation for the random effects full conditional, establish its asymptotic correctness and evaluate how well it performs. We make the case for hierarchical binomial and Poisson regression models with canonical link functions, for hierarchical gamma regression models with log link and for other cases. We also develop what we term a sufficient reduction (SR) approach to the Markov Chain Monte Carlo algorithm that allows for making inferences about all model parameters by replacing the full conditional for the latent variables with a considerably reduced dimensional function of the latents. We expect that this approximation could be quite useful in situations where there are a very large number of latent effects, which may be occurring in an increasingly ‘Big Data’ world. In the sequel, we compare our methods with INLA, which is a particularly popular method and which has been shown to be excellent in terms of speed and accuracy across a variety of settings. Our methods appear to be comparable to theirs in terms of accuracy, while INLA was faster, for the settings we considered. In addition, we note that our methods and those of others that involve Gibbs sampling trivially handle parameters that are functions of multiple parameters, while INLA approximations do not. Our primary illustration is for a three-level hierarchical binomial regression model for data on health outcomes for patients who are clustered within physicians who are clustered within particular hospitals or hospital systems.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"66 2\",\"pages\":\"163-203\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12412\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12412","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Approximate inferences for Bayesian hierarchical generalised linear regression models
Generalised linear mixed regression models are fundamental in statistics. Modelling random effects that are shared by individuals allows for correlation among those individuals. There are many methods and statistical packages available for analysing data using these models. Most require some form of numerical or analytic approximation because the likelihood function generally involves intractable integrals over the latents. The Bayesian approach avoids this issue by iteratively sampling the full conditional distributions for various blocks of parameters and latent random effects. Depending on the choice of the prior, some full conditionals are recognisable while others are not. In this paper we develop a novel normal approximation for the random effects full conditional, establish its asymptotic correctness and evaluate how well it performs. We make the case for hierarchical binomial and Poisson regression models with canonical link functions, for hierarchical gamma regression models with log link and for other cases. We also develop what we term a sufficient reduction (SR) approach to the Markov Chain Monte Carlo algorithm that allows for making inferences about all model parameters by replacing the full conditional for the latent variables with a considerably reduced dimensional function of the latents. We expect that this approximation could be quite useful in situations where there are a very large number of latent effects, which may be occurring in an increasingly ‘Big Data’ world. In the sequel, we compare our methods with INLA, which is a particularly popular method and which has been shown to be excellent in terms of speed and accuracy across a variety of settings. Our methods appear to be comparable to theirs in terms of accuracy, while INLA was faster, for the settings we considered. In addition, we note that our methods and those of others that involve Gibbs sampling trivially handle parameters that are functions of multiple parameters, while INLA approximations do not. Our primary illustration is for a three-level hierarchical binomial regression model for data on health outcomes for patients who are clustered within physicians who are clustered within particular hospitals or hospital systems.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.