Hamza Ruzayqat, Alexandros Beskos, Dan Crisan, Ajay Jasra, Nikolas Kantas
{"title":"应用于未知数据位置的拉格朗日数据同化的序列马尔可夫链蒙特卡洛方法","authors":"Hamza Ruzayqat, Alexandros Beskos, Dan Crisan, Ajay Jasra, Nikolas Kantas","doi":"10.1002/qj.4716","DOIUrl":null,"url":null,"abstract":"We consider a class of high‐dimensional spatial filtering problems, where the spatial locations of observations are unknown and driven by the partially observed hidden signal. This problem is exceptionally challenging, as not only is it high‐dimensional, but the model for the signal yields longer‐range time dependences through the observation locations. Motivated by this model, we revisit a lesser‐known and <jats:italic>provably convergent</jats:italic> computational methodology from Berzuini <jats:italic>et al</jats:italic>. (1997, <jats:italic>Journal of the American Statistical Association</jats:italic>, 92, 1403–1412); Centanniand Minozzo (2006, <jats:italic>Journal of the American Statistical Association</jats:italic>, 101, 1582–1597); Martin <jats:italic>et al</jats:italic>. (2013, <jats:italic>Annals of the Institute of Statistical Mathematics</jats:italic>, 65, 413–437) that uses sequential Markov Chain Monte Carlo (MCMC) chains. We extend this methodology for data filtering problems with unknown observation locations. We benchmark our algorithms on linear Gaussian state‐space models against competing ensemble methods and demonstrate a significant improvement in both execution speed and accuracy. Finally, we implement a realistic case study on a high‐dimensional rotating shallow‐water model (of about – dimensions) with real and synthetic data. The data are provided by the National Oceanic and Atmospheric Administration (NOAA) and contain observations from ocean drifters in a domain of the Atlantic Ocean restricted to the longitude and latitude intervals , , respectively.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Markov chain Monte Carlo for Lagrangian data assimilation with applications to unknown data locations\",\"authors\":\"Hamza Ruzayqat, Alexandros Beskos, Dan Crisan, Ajay Jasra, Nikolas Kantas\",\"doi\":\"10.1002/qj.4716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of high‐dimensional spatial filtering problems, where the spatial locations of observations are unknown and driven by the partially observed hidden signal. This problem is exceptionally challenging, as not only is it high‐dimensional, but the model for the signal yields longer‐range time dependences through the observation locations. Motivated by this model, we revisit a lesser‐known and <jats:italic>provably convergent</jats:italic> computational methodology from Berzuini <jats:italic>et al</jats:italic>. (1997, <jats:italic>Journal of the American Statistical Association</jats:italic>, 92, 1403–1412); Centanniand Minozzo (2006, <jats:italic>Journal of the American Statistical Association</jats:italic>, 101, 1582–1597); Martin <jats:italic>et al</jats:italic>. (2013, <jats:italic>Annals of the Institute of Statistical Mathematics</jats:italic>, 65, 413–437) that uses sequential Markov Chain Monte Carlo (MCMC) chains. We extend this methodology for data filtering problems with unknown observation locations. We benchmark our algorithms on linear Gaussian state‐space models against competing ensemble methods and demonstrate a significant improvement in both execution speed and accuracy. Finally, we implement a realistic case study on a high‐dimensional rotating shallow‐water model (of about – dimensions) with real and synthetic data. The data are provided by the National Oceanic and Atmospheric Administration (NOAA) and contain observations from ocean drifters in a domain of the Atlantic Ocean restricted to the longitude and latitude intervals , , respectively.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4716\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4716","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Sequential Markov chain Monte Carlo for Lagrangian data assimilation with applications to unknown data locations
We consider a class of high‐dimensional spatial filtering problems, where the spatial locations of observations are unknown and driven by the partially observed hidden signal. This problem is exceptionally challenging, as not only is it high‐dimensional, but the model for the signal yields longer‐range time dependences through the observation locations. Motivated by this model, we revisit a lesser‐known and provably convergent computational methodology from Berzuini et al. (1997, Journal of the American Statistical Association, 92, 1403–1412); Centanniand Minozzo (2006, Journal of the American Statistical Association, 101, 1582–1597); Martin et al. (2013, Annals of the Institute of Statistical Mathematics, 65, 413–437) that uses sequential Markov Chain Monte Carlo (MCMC) chains. We extend this methodology for data filtering problems with unknown observation locations. We benchmark our algorithms on linear Gaussian state‐space models against competing ensemble methods and demonstrate a significant improvement in both execution speed and accuracy. Finally, we implement a realistic case study on a high‐dimensional rotating shallow‐water model (of about – dimensions) with real and synthetic data. The data are provided by the National Oceanic and Atmospheric Administration (NOAA) and contain observations from ocean drifters in a domain of the Atlantic Ocean restricted to the longitude and latitude intervals , , respectively.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.