光滑规范空间的维格纳特性

IF 0.6 4区 数学 Q3 MATHEMATICS
XUJIAN HUANG, JIABIN LIU, SHUMING WANG
{"title":"光滑规范空间的维格纳特性","authors":"XUJIAN HUANG, JIABIN LIU, SHUMING WANG","doi":"10.1017/s0004972724000248","DOIUrl":null,"url":null,"abstract":"We prove that every smooth complex normed space <jats:italic>X</jats:italic> has the Wigner property. That is, for any complex normed space <jats:italic>Y</jats:italic> and every surjective mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline1.png\"/> <jats:tex-math> $f: X\\rightarrow Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_eqnu1.png\"/> <jats:tex-math> $$ \\begin{align*} \\{\\|f(x)+\\alpha f(y)\\|: \\alpha\\in \\mathbb{T}\\}=\\{\\|x+\\alpha y\\|: \\alpha\\in \\mathbb{T}\\}, \\quad x,y\\in X, \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline2.png\"/> <jats:tex-math> $\\mathbb {T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the unit circle of the complex plane, there exists a function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline3.png\"/> <jats:tex-math> $\\sigma : X\\rightarrow \\mathbb {T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000248_inline4.png\"/> <jats:tex-math> $\\sigma \\cdot f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE WIGNER PROPERTY OF SMOOTH NORMED SPACES\",\"authors\":\"XUJIAN HUANG, JIABIN LIU, SHUMING WANG\",\"doi\":\"10.1017/s0004972724000248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every smooth complex normed space <jats:italic>X</jats:italic> has the Wigner property. That is, for any complex normed space <jats:italic>Y</jats:italic> and every surjective mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000248_inline1.png\\\"/> <jats:tex-math> $f: X\\\\rightarrow Y$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000248_eqnu1.png\\\"/> <jats:tex-math> $$ \\\\begin{align*} \\\\{\\\\|f(x)+\\\\alpha f(y)\\\\|: \\\\alpha\\\\in \\\\mathbb{T}\\\\}=\\\\{\\\\|x+\\\\alpha y\\\\|: \\\\alpha\\\\in \\\\mathbb{T}\\\\}, \\\\quad x,y\\\\in X, \\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000248_inline2.png\\\"/> <jats:tex-math> $\\\\mathbb {T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the unit circle of the complex plane, there exists a function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000248_inline3.png\\\"/> <jats:tex-math> $\\\\sigma : X\\\\rightarrow \\\\mathbb {T}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000248_inline4.png\\\"/> <jats:tex-math> $\\\\sigma \\\\cdot f$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000248\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000248","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明每个光滑复规范空间 X 都具有维格纳特性。也就是说,对于任何复规范空间 Y 和每一个投射映射 $f:Xrightarrow Y$ 满足 $$ (开始{align*})\f(x)+α f(y)||:=(x+y):\alpha\in \mathbb{T}\}, \quad x,y\in X, \end{align*}$$ 其中 $\mathbb {T}$ 是复平面的单位圆,存在一个函数 $\sigma : X\rightarrow \mathbb {T}$ 使得 $\sigma \cdot f$ 是线性或反线性等距。这是复数规范空间的维格纳定理的变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE WIGNER PROPERTY OF SMOOTH NORMED SPACES
We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying $$ \begin{align*} \{\|f(x)+\alpha f(y)\|: \alpha\in \mathbb{T}\}=\{\|x+\alpha y\|: \alpha\in \mathbb{T}\}, \quad x,y\in X, \end{align*} $$ where $\mathbb {T}$ is the unit circle of the complex plane, there exists a function $\sigma : X\rightarrow \mathbb {T}$ such that $\sigma \cdot f$ is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信