标准和分数布朗运动驱动的反射随机微分方程

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Monir Chadad, Mohamed Erraoui
{"title":"标准和分数布朗运动驱动的反射随机微分方程","authors":"Monir Chadad, Mohamed Erraoui","doi":"10.1142/s0219493724500114","DOIUrl":null,"url":null,"abstract":"<p>The reflection problem on the positive half-line with reflection at zero for a time-dependent stochastic differential equations driven by standard and fractional Brownian motion with Hurst parameter <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span><span></span> is considered. We prove the existence of weak solutions by using Euler scheme. Moreover, we show that pathwise uniqueness holds and a strong solution exists in the case of additive fractional noise and also up to a stopping time <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span> for the multiplicative case, but remains an open question beyond <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>.</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflected stochastic differential equations driven by standard and fractional Brownian motion\",\"authors\":\"Monir Chadad, Mohamed Erraoui\",\"doi\":\"10.1142/s0219493724500114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The reflection problem on the positive half-line with reflection at zero for a time-dependent stochastic differential equations driven by standard and fractional Brownian motion with Hurst parameter <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span><span></span> is considered. We prove the existence of weak solutions by using Euler scheme. Moreover, we show that pathwise uniqueness holds and a strong solution exists in the case of additive fractional noise and also up to a stopping time <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span> for the multiplicative case, but remains an open question beyond <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>.</p>\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493724500114\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493724500114","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了由标准布朗运动和分数布朗运动驱动、赫斯特参数为 H>12 的时变随机微分方程在正半线上的反射问题。我们利用欧拉方案证明了弱解的存在性。此外,我们还证明了路径唯一性成立,并且在加性分数噪声的情况下存在强解,在乘性情况下,强解在停止时间 τ 之前也是存在的,但超过 τ 时仍是一个未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflected stochastic differential equations driven by standard and fractional Brownian motion

The reflection problem on the positive half-line with reflection at zero for a time-dependent stochastic differential equations driven by standard and fractional Brownian motion with Hurst parameter H>12 is considered. We prove the existence of weak solutions by using Euler scheme. Moreover, we show that pathwise uniqueness holds and a strong solution exists in the case of additive fractional noise and also up to a stopping time τ for the multiplicative case, but remains an open question beyond τ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信