数域上非常数映射的有限性

IF 0.6 3区 数学 Q3 MATHEMATICS
Ariyan Javanpeykar
{"title":"数域上非常数映射的有限性","authors":"Ariyan Javanpeykar","doi":"10.4310/mrl.2023.v30.n5.a9","DOIUrl":null,"url":null,"abstract":"Motivated by the intermediate Lang conjectures on hyperbolicity and rational points, we prove new finiteness results for non-constant morphisms from a fixed variety to a fixed variety defined over a number field by applying Faltings’s finiteness results to moduli spaces of maps.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finiteness of non-constant maps over a number field\",\"authors\":\"Ariyan Javanpeykar\",\"doi\":\"10.4310/mrl.2023.v30.n5.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the intermediate Lang conjectures on hyperbolicity and rational points, we prove new finiteness results for non-constant morphisms from a fixed variety to a fixed variety defined over a number field by applying Faltings’s finiteness results to moduli spaces of maps.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n5.a9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受郎氏关于双曲性和有理点的中间猜想的启发,我们通过将法尔廷斯的有限性结果应用于映射的模空间,证明了从定域到定义在数域上的定域的非常数变形的新有限性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finiteness of non-constant maps over a number field
Motivated by the intermediate Lang conjectures on hyperbolicity and rational points, we prove new finiteness results for non-constant morphisms from a fixed variety to a fixed variety defined over a number field by applying Faltings’s finiteness results to moduli spaces of maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信