关于五维吻合安排的说明

IF 0.6 3区 数学 Q3 MATHEMATICS
Ferenc Szöllősi
{"title":"关于五维吻合安排的说明","authors":"Ferenc Szöllősi","doi":"10.4310/mrl.2023.v30.n5.a13","DOIUrl":null,"url":null,"abstract":"The kissing number $\\tau (d)$ is the maximum number of pairwise non-overlapping unit spheres each touching a central unit sphere in the $d$-dimensional Euclidean space. In this note we report on how we discovered a new, previously unknown arrangement of 40 unit spheres in dimension $5$. Our arrangement saturates the best known lower bound on $\\tau (5)$, and refutes a ‘belief’ of Cohn–Jiao–Kumar–Torquato.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"77 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on five dimensional kissing arrangements\",\"authors\":\"Ferenc Szöllősi\",\"doi\":\"10.4310/mrl.2023.v30.n5.a13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kissing number $\\\\tau (d)$ is the maximum number of pairwise non-overlapping unit spheres each touching a central unit sphere in the $d$-dimensional Euclidean space. In this note we report on how we discovered a new, previously unknown arrangement of 40 unit spheres in dimension $5$. Our arrangement saturates the best known lower bound on $\\\\tau (5)$, and refutes a ‘belief’ of Cohn–Jiao–Kumar–Torquato.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n5.a13\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a13","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

接吻数 $\tau (d)$ 是指在 $d$ 维欧几里得空间中,每个与中心单位球接触的成对非重叠单位球的最大数目。在这篇论文中,我们报告了如何在 5 美元维度中发现了一种新的、以前未知的 40 个单位球的排列方式。我们的排列使 $\tau (5)$ 的已知最佳下限达到饱和,并反驳了 Cohn-Jiaoo-Kumar-Torquato 的 "信念"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on five dimensional kissing arrangements
The kissing number $\tau (d)$ is the maximum number of pairwise non-overlapping unit spheres each touching a central unit sphere in the $d$-dimensional Euclidean space. In this note we report on how we discovered a new, previously unknown arrangement of 40 unit spheres in dimension $5$. Our arrangement saturates the best known lower bound on $\tau (5)$, and refutes a ‘belief’ of Cohn–Jiao–Kumar–Torquato.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信