非线性磁性薛定谔方程的部分数据逆问题

IF 0.6 3区 数学 Q3 MATHEMATICS
Ru-Yu Lai, Ting Zhou
{"title":"非线性磁性薛定谔方程的部分数据逆问题","authors":"Ru-Yu Lai, Ting Zhou","doi":"10.4310/mrl.2023.v30.n5.a10","DOIUrl":null,"url":null,"abstract":"We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\\mathbb{R}^n , n \\geq 2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial data inverse problems for nonlinear magnetic Schrödinger equations\",\"authors\":\"Ru-Yu Lai, Ting Zhou\",\"doi\":\"10.4310/mrl.2023.v30.n5.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\\\\mathbb{R}^n , n \\\\geq 2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n5.a10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在$\mathbb{R}^n , n \geq 2$的有界域的部分边界上测量迪里希勒到诺伊曼映射,可以唯一地确定非线性磁薛定谔方程中的矢量磁势和标量电势,两者在解中都是非线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial data inverse problems for nonlinear magnetic Schrödinger equations
We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\mathbb{R}^n , n \geq 2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信