{"title":"非线性磁性薛定谔方程的部分数据逆问题","authors":"Ru-Yu Lai, Ting Zhou","doi":"10.4310/mrl.2023.v30.n5.a10","DOIUrl":null,"url":null,"abstract":"We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\\mathbb{R}^n , n \\geq 2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial data inverse problems for nonlinear magnetic Schrödinger equations\",\"authors\":\"Ru-Yu Lai, Ting Zhou\",\"doi\":\"10.4310/mrl.2023.v30.n5.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\\\\mathbb{R}^n , n \\\\geq 2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n5.a10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n5.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,在$\mathbb{R}^n , n \geq 2$的有界域的部分边界上测量迪里希勒到诺伊曼映射,可以唯一地确定非线性磁薛定谔方程中的矢量磁势和标量电势,两者在解中都是非线性的。
Partial data inverse problems for nonlinear magnetic Schrödinger equations
We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\mathbb{R}^n , n \geq 2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.