$$A_\Phi (G)$$ 的阿伦正则性

IF 1.1 2区 数学 Q1 MATHEMATICS
Arvish Dabra, N. Shravan Kumar
{"title":"$$A_\\Phi (G)$$ 的阿伦正则性","authors":"Arvish Dabra, N. Shravan Kumar","doi":"10.1007/s43037-024-00345-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a locally compact group and let <span>\\(A_\\Phi (G)\\)</span> be the Orlicz version of the Figà–Talamanca Herz algebra of G associated with a Young function <span>\\(\\Phi .\\)</span> We show that if <span>\\(A_\\Phi (G)\\)</span> is Arens regular, then <i>G</i> is discrete. We further explore the Arens regularity of <span>\\(A_\\Phi (G)\\)</span> when the underlying group <i>G</i> is discrete. In the running, we also show that <span>\\(A_\\Phi (G)\\)</span> is finite dimensional if and only if <i>G</i> is finite. Further, for amenable groups, we show that <span>\\(A_\\Phi (G)\\)</span> is reflexive if and only if <i>G</i> is finite, under the assumption that the associated Young function <span>\\(\\Phi \\)</span> satisfies the MA condition.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"26 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arens regularity of $$A_\\\\Phi (G)$$\",\"authors\":\"Arvish Dabra, N. Shravan Kumar\",\"doi\":\"10.1007/s43037-024-00345-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a locally compact group and let <span>\\\\(A_\\\\Phi (G)\\\\)</span> be the Orlicz version of the Figà–Talamanca Herz algebra of G associated with a Young function <span>\\\\(\\\\Phi .\\\\)</span> We show that if <span>\\\\(A_\\\\Phi (G)\\\\)</span> is Arens regular, then <i>G</i> is discrete. We further explore the Arens regularity of <span>\\\\(A_\\\\Phi (G)\\\\)</span> when the underlying group <i>G</i> is discrete. In the running, we also show that <span>\\\\(A_\\\\Phi (G)\\\\)</span> is finite dimensional if and only if <i>G</i> is finite. Further, for amenable groups, we show that <span>\\\\(A_\\\\Phi (G)\\\\)</span> is reflexive if and only if <i>G</i> is finite, under the assumption that the associated Young function <span>\\\\(\\\\Phi \\\\)</span> satisfies the MA condition.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00345-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00345-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是局部紧凑群,让 \(A_\Phi (G)\) 是与杨函数 \(\Phi .\) 相关的 G 的 Figà-Talamanca Herz 代数的 Orlicz 版本。 我们证明,如果 \(A_\Phi (G)\) 是阿伦斯正则的,那么 G 就是离散的。当底层群 G 是离散的时候,我们进一步探讨了 \(A_\Phi (G)\) 的阿伦正则性。在这一过程中,我们还证明了当且仅当 G 是有限的时\(A_\Phi (G)\) 是有限维的。此外,对于可调和群,我们证明了当且仅当 G 是有限群时,\(A_\Phi (G)\) 是反向的,前提是相关的 Young 函数 \(\Phi \) 满足 MA 条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arens regularity of $$A_\Phi (G)$$

Let G be a locally compact group and let \(A_\Phi (G)\) be the Orlicz version of the Figà–Talamanca Herz algebra of G associated with a Young function \(\Phi .\) We show that if \(A_\Phi (G)\) is Arens regular, then G is discrete. We further explore the Arens regularity of \(A_\Phi (G)\) when the underlying group G is discrete. In the running, we also show that \(A_\Phi (G)\) is finite dimensional if and only if G is finite. Further, for amenable groups, we show that \(A_\Phi (G)\) is reflexive if and only if G is finite, under the assumption that the associated Young function \(\Phi \) satisfies the MA condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信