某些 Calabi-Yau 和一般类型完全交叉点上的规则和刚性曲线

IF 0.6 4区 数学 Q3 MATHEMATICS
Ziv Ran
{"title":"某些 Calabi-Yau 和一般类型完全交叉点上的规则和刚性曲线","authors":"Ziv Ran","doi":"10.1142/s0129167x24420011","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> be either a general hypersurface of degree <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span> in <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> or a general <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> complete intersection in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msup><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn></math></span><span></span>. We construct balanced rational curves on <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> of all high enough degrees. If <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>=</mo><mn>4</mn></math></span><span></span> or <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>=</mo><mn>1</mn></math></span><span></span>, we construct rigid curves of genus <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi></math></span><span></span> on <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> of all high enough degrees. As an application we construct some rigid bundles on Calabi–Yau threefolds. In addition, we construct some low-degree balanced rational curves on hypersurfaces of degree <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn></math></span><span></span> in <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular and rigid curves on some Calabi–Yau and general-type complete intersections\",\"authors\":\"Ziv Ran\",\"doi\":\"10.1142/s0129167x24420011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> be either a general hypersurface of degree <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></math></span><span></span> in <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> or a general <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> complete intersection in <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msup><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn></math></span><span></span>. We construct balanced rational curves on <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> of all high enough degrees. If <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>=</mo><mn>4</mn></math></span><span></span> or <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi><mo>=</mo><mn>1</mn></math></span><span></span>, we construct rigid curves of genus <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>g</mi></math></span><span></span> on <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> of all high enough degrees. As an application we construct some rigid bundles on Calabi–Yau threefolds. In addition, we construct some low-degree balanced rational curves on hypersurfaces of degree <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>2</mn></math></span><span></span> in <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span>.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24420011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24420011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 X 是ℙn 中 n+1 度的一般超曲面,或者是ℙn+1,n≥4 中的一般 (2,n) 完全交集。我们在 X 上构造所有足够高度的平衡有理曲线。如果 n=4 或 g=1,我们将在 X 上构造所有足够高度的属 g 的刚性曲线。作为应用,我们在 Calabi-Yau 三折上构造一些刚性束。此外,我们还在ℙn 中 n+2 度的超曲面上构造了一些低度平衡有理曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular and rigid curves on some Calabi–Yau and general-type complete intersections

Let X be either a general hypersurface of degree n+1 in n or a general (2,n) complete intersection in n+1,n4. We construct balanced rational curves on X of all high enough degrees. If n=4 or g=1, we construct rigid curves of genus g on X of all high enough degrees. As an application we construct some rigid bundles on Calabi–Yau threefolds. In addition, we construct some low-degree balanced rational curves on hypersurfaces of degree n+2 in n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信