Stanley Gregory, Linda Ashkenas, Randall Wildman, George Lienkaemper, Ivan Arismendi, Gary A. Lamberti, Mark Meleason, Brooke E. Penaluna, Daniel Sobota
{"title":"俄勒冈州喀斯喀特山脉原始森林和次生林溪流中大型木材的长期动态变化","authors":"Stanley Gregory, Linda Ashkenas, Randall Wildman, George Lienkaemper, Ivan Arismendi, Gary A. Lamberti, Mark Meleason, Brooke E. Penaluna, Daniel Sobota","doi":"10.1002/rra.4294","DOIUrl":null,"url":null,"abstract":"We quantified temporal dynamics of wood storage, input, and transport over a 24‐year period in adjacent old‐growth and second‐growth forested reaches in Mack Creek, a third‐order stream in the Cascade Range of Oregon. The standing stocks of large wood in the old‐growth reach exceeded those at the second‐growth reach by more than double the number of wood pieces and triple the wood volume. Annual inputs of large wood were highly variable. Wood numbers delivered into the old‐growth reach were 3× higher and wood volume 10× greater than in the second‐growth reach. The movement of number and volume of logs did not differ significantly between the two reaches over time. Less than 2% of the logs moved in most years, and the highest proportion moved in the year of the 1996 flood (9% in old growth and 22% in second growth). Most of the large wood aggregated as jams in both reaches. The second‐growth reach lacked major jams, but 29% of the logs in the old growth were in full‐channel spanning jams. Long‐term observations of annual storage, input, and movement reveal the temporal dynamics of wood rather than static representations of the characteristics of wood. Input events and transport of wood in Mack Creek were episodic and varied greatly over the 24‐year study, which illustrates one of the major challenges and opportunities for understanding the cumulative dynamics of wood in streams.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"123 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long‐term dynamics of large wood in old‐growth and second‐growth stream reaches in the Cascade Range of Oregon\",\"authors\":\"Stanley Gregory, Linda Ashkenas, Randall Wildman, George Lienkaemper, Ivan Arismendi, Gary A. Lamberti, Mark Meleason, Brooke E. Penaluna, Daniel Sobota\",\"doi\":\"10.1002/rra.4294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We quantified temporal dynamics of wood storage, input, and transport over a 24‐year period in adjacent old‐growth and second‐growth forested reaches in Mack Creek, a third‐order stream in the Cascade Range of Oregon. The standing stocks of large wood in the old‐growth reach exceeded those at the second‐growth reach by more than double the number of wood pieces and triple the wood volume. Annual inputs of large wood were highly variable. Wood numbers delivered into the old‐growth reach were 3× higher and wood volume 10× greater than in the second‐growth reach. The movement of number and volume of logs did not differ significantly between the two reaches over time. Less than 2% of the logs moved in most years, and the highest proportion moved in the year of the 1996 flood (9% in old growth and 22% in second growth). Most of the large wood aggregated as jams in both reaches. The second‐growth reach lacked major jams, but 29% of the logs in the old growth were in full‐channel spanning jams. Long‐term observations of annual storage, input, and movement reveal the temporal dynamics of wood rather than static representations of the characteristics of wood. Input events and transport of wood in Mack Creek were episodic and varied greatly over the 24‐year study, which illustrates one of the major challenges and opportunities for understanding the cumulative dynamics of wood in streams.\",\"PeriodicalId\":21513,\"journal\":{\"name\":\"River Research and Applications\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"River Research and Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4294\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4294","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long‐term dynamics of large wood in old‐growth and second‐growth stream reaches in the Cascade Range of Oregon
We quantified temporal dynamics of wood storage, input, and transport over a 24‐year period in adjacent old‐growth and second‐growth forested reaches in Mack Creek, a third‐order stream in the Cascade Range of Oregon. The standing stocks of large wood in the old‐growth reach exceeded those at the second‐growth reach by more than double the number of wood pieces and triple the wood volume. Annual inputs of large wood were highly variable. Wood numbers delivered into the old‐growth reach were 3× higher and wood volume 10× greater than in the second‐growth reach. The movement of number and volume of logs did not differ significantly between the two reaches over time. Less than 2% of the logs moved in most years, and the highest proportion moved in the year of the 1996 flood (9% in old growth and 22% in second growth). Most of the large wood aggregated as jams in both reaches. The second‐growth reach lacked major jams, but 29% of the logs in the old growth were in full‐channel spanning jams. Long‐term observations of annual storage, input, and movement reveal the temporal dynamics of wood rather than static representations of the characteristics of wood. Input events and transport of wood in Mack Creek were episodic and varied greatly over the 24‐year study, which illustrates one of the major challenges and opportunities for understanding the cumulative dynamics of wood in streams.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.