{"title":"带耗散的七阶均相动力系统的不变式","authors":"M. V. Shamolin","doi":"10.1134/S1064562424701941","DOIUrl":null,"url":null,"abstract":"<p>New cases of integrable seventh-order dynamical systems that are homogeneous with respect to some of the variables are presented, in which a system on the tangent bundle of a three-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external component, which has dissipation of different signs. The external field is introduced using some unimodular transformation and generalizes previously considered fields. Complete sets of both first integrals and invariant differential forms are given.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariants of Seventh-Order Homogeneous Dynamical Systems with Dissipation\",\"authors\":\"M. V. Shamolin\",\"doi\":\"10.1134/S1064562424701941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>New cases of integrable seventh-order dynamical systems that are homogeneous with respect to some of the variables are presented, in which a system on the tangent bundle of a three-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external component, which has dissipation of different signs. The external field is introduced using some unimodular transformation and generalizes previously considered fields. Complete sets of both first integrals and invariant differential forms are given.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Invariants of Seventh-Order Homogeneous Dynamical Systems with Dissipation
New cases of integrable seventh-order dynamical systems that are homogeneous with respect to some of the variables are presented, in which a system on the tangent bundle of a three-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external component, which has dissipation of different signs. The external field is introduced using some unimodular transformation and generalizes previously considered fields. Complete sets of both first integrals and invariant differential forms are given.