{"title":"机器学习控制由计算基础设施驱动的网络","authors":"R. L. Smeliansky, E. P. Stepanov","doi":"10.1134/S106456242470193X","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) methods are applied to optimal resource control for Network Powered by Computing Infrastructure (NPC)—a new generation computing infrastructure. The relation between the proposed computing infrastructure and the GRID concept is considered. It is shown how ML methods applied to computing infrastructure control make it possible to solve the problems of computing infrastructure control that did not allow the GRID concept to be implemented in full force. As an example, the application of multi-agent optimization methods with reinforcement learning for network resource management is considered. It is shown that multi-agent ML methods increase the speed of distribution of transport flows and ensure optimal NPC network channel load based on uniform load balancing; moreover, such control of network resources is more effective than a centralized approach.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning to Control Network Powered by Computing Infrastructure\",\"authors\":\"R. L. Smeliansky, E. P. Stepanov\",\"doi\":\"10.1134/S106456242470193X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning (ML) methods are applied to optimal resource control for Network Powered by Computing Infrastructure (NPC)—a new generation computing infrastructure. The relation between the proposed computing infrastructure and the GRID concept is considered. It is shown how ML methods applied to computing infrastructure control make it possible to solve the problems of computing infrastructure control that did not allow the GRID concept to be implemented in full force. As an example, the application of multi-agent optimization methods with reinforcement learning for network resource management is considered. It is shown that multi-agent ML methods increase the speed of distribution of transport flows and ensure optimal NPC network channel load based on uniform load balancing; moreover, such control of network resources is more effective than a centralized approach.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106456242470193X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S106456242470193X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 将机器学习(ML)方法应用于新一代计算基础设施--网络计算基础设施(NPC)的最优资源控制。研究考虑了所提出的计算基础设施与 GRID 概念之间的关系。研究表明,将 ML 方法应用于计算基础设施控制,可以解决计算基础设施控制问题,而这些问题导致无法全面实施 GRID 概念。举例来说,我们考虑了多代理优化方法与强化学习在网络资源管理中的应用。结果表明,多代理 ML 方法提高了传输流的分配速度,并确保了基于统一负载平衡的最佳 NPC 网络通道负载;此外,这种网络资源控制比集中式方法更有效。
Machine Learning to Control Network Powered by Computing Infrastructure
Machine learning (ML) methods are applied to optimal resource control for Network Powered by Computing Infrastructure (NPC)—a new generation computing infrastructure. The relation between the proposed computing infrastructure and the GRID concept is considered. It is shown how ML methods applied to computing infrastructure control make it possible to solve the problems of computing infrastructure control that did not allow the GRID concept to be implemented in full force. As an example, the application of multi-agent optimization methods with reinforcement learning for network resource management is considered. It is shown that multi-agent ML methods increase the speed of distribution of transport flows and ensure optimal NPC network channel load based on uniform load balancing; moreover, such control of network resources is more effective than a centralized approach.