{"title":"具有任意长周期的超椭圆场中的连续分数","authors":"V. P. Platonov, G. V. Fedorov","doi":"10.1134/S1064562424701928","DOIUrl":null,"url":null,"abstract":"<p>The article proves the following statement: in any hyperelliptic field <i>L</i> defined over the field of algebraic numbers <i>K</i> which having non-trivial units of the ring of integer elements of the field <i>L</i>, there is an element for which the period length of the continued fraction is greater any pre-given number.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continued Fractions in Hyperelliptic Fields with an Arbitrarily Long Period\",\"authors\":\"V. P. Platonov, G. V. Fedorov\",\"doi\":\"10.1134/S1064562424701928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article proves the following statement: in any hyperelliptic field <i>L</i> defined over the field of algebraic numbers <i>K</i> which having non-trivial units of the ring of integer elements of the field <i>L</i>, there is an element for which the period length of the continued fraction is greater any pre-given number.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 文章证明了以下陈述:在代数数域 K 上定义的任何超椭圆域 L 中,如果域 L 的整数元素环上有非三维单元,则存在一个元素,其续分数的周期长度大于任何给定的数。
Continued Fractions in Hyperelliptic Fields with an Arbitrarily Long Period
The article proves the following statement: in any hyperelliptic field L defined over the field of algebraic numbers K which having non-trivial units of the ring of integer elements of the field L, there is an element for which the period length of the continued fraction is greater any pre-given number.