稀疏随机图中的最大诱导树

Pub Date : 2024-05-13 DOI:10.1134/S1064562424701989
J. C. Buitrago Oropeza
{"title":"稀疏随机图中的最大诱导树","authors":"J. C. Buitrago Oropeza","doi":"10.1134/S1064562424701989","DOIUrl":null,"url":null,"abstract":"<p>We prove that for any <span>\\(\\varepsilon &gt; 0\\)</span> and <span>\\({{n}^{{ - \\frac{{e - 2}}{{3e - 2}} + \\varepsilon }}} \\leqslant p = o(1)\\)</span> the maximum size of an induced subtree of the binomial random graph <span>\\(G(n,p)\\)</span> is concentrated asymptotically almost surely at two consecutive points.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Induced Trees in Sparse Random Graphs\",\"authors\":\"J. C. Buitrago Oropeza\",\"doi\":\"10.1134/S1064562424701989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for any <span>\\\\(\\\\varepsilon &gt; 0\\\\)</span> and <span>\\\\({{n}^{{ - \\\\frac{{e - 2}}{{3e - 2}} + \\\\varepsilon }}} \\\\leqslant p = o(1)\\\\)</span> the maximum size of an induced subtree of the binomial random graph <span>\\\\(G(n,p)\\\\)</span> is concentrated asymptotically almost surely at two consecutive points.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AbstractWe prove that for any \(\varepsilon > 0\) and\({{n}^{ - \frac{{e - 2}}{{3e - 2}})+ \varepsilon }}}\二项式随机图 \(G(n,p)\) 的诱导子树的最大尺寸几乎肯定地集中在两个连续点上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maximum Induced Trees in Sparse Random Graphs

We prove that for any \(\varepsilon > 0\) and \({{n}^{{ - \frac{{e - 2}}{{3e - 2}} + \varepsilon }}} \leqslant p = o(1)\) the maximum size of an induced subtree of the binomial random graph \(G(n,p)\) is concentrated asymptotically almost surely at two consecutive points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信