{"title":"盒域上凸多元函数的得失视角","authors":"Luze Xu, Jon Lee","doi":"10.1007/s10107-024-02087-y","DOIUrl":null,"url":null,"abstract":"<p>Mixed-integer nonlinear optimization formulations of the disjunction between the origin and a polytope via a binary indicator variable is broadly used in nonlinear combinatorial optimization for modeling a fixed cost associated with carrying out a group of activities and a convex cost function associated with the levels of the activities. The perspective relaxation of such models is often used to solve to global optimality in a branch-and-bound context, but it typically requires suitable conic solvers and is not compatible with general-purpose NLP software in the presence of other classes of constraints. This motivates the investigation of when simpler but weaker relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as a measure of tightness, we lift some of the results related to the simplex case to the box case. In order to compare the volumes of different relaxations in the box case, it is necessary to find an appropriate concave upper bound that preserves the convexity and is minimal, which is more difficult than in the simplex case. To address the challenge beyond the simplex case, the triangulation approach is used.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"28 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaining or losing perspective for convex multivariate functions on box domains\",\"authors\":\"Luze Xu, Jon Lee\",\"doi\":\"10.1007/s10107-024-02087-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mixed-integer nonlinear optimization formulations of the disjunction between the origin and a polytope via a binary indicator variable is broadly used in nonlinear combinatorial optimization for modeling a fixed cost associated with carrying out a group of activities and a convex cost function associated with the levels of the activities. The perspective relaxation of such models is often used to solve to global optimality in a branch-and-bound context, but it typically requires suitable conic solvers and is not compatible with general-purpose NLP software in the presence of other classes of constraints. This motivates the investigation of when simpler but weaker relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as a measure of tightness, we lift some of the results related to the simplex case to the box case. In order to compare the volumes of different relaxations in the box case, it is necessary to find an appropriate concave upper bound that preserves the convexity and is minimal, which is more difficult than in the simplex case. To address the challenge beyond the simplex case, the triangulation approach is used.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02087-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02087-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Gaining or losing perspective for convex multivariate functions on box domains
Mixed-integer nonlinear optimization formulations of the disjunction between the origin and a polytope via a binary indicator variable is broadly used in nonlinear combinatorial optimization for modeling a fixed cost associated with carrying out a group of activities and a convex cost function associated with the levels of the activities. The perspective relaxation of such models is often used to solve to global optimality in a branch-and-bound context, but it typically requires suitable conic solvers and is not compatible with general-purpose NLP software in the presence of other classes of constraints. This motivates the investigation of when simpler but weaker relaxations may be adequate. Comparing the volume (i.e., Lebesgue measure) of the relaxations as a measure of tightness, we lift some of the results related to the simplex case to the box case. In order to compare the volumes of different relaxations in the box case, it is necessary to find an appropriate concave upper bound that preserves the convexity and is minimal, which is more difficult than in the simplex case. To address the challenge beyond the simplex case, the triangulation approach is used.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.