马科维茨遇上贝尔曼:投资组合管理中的知识强化学习

Gang Hu, Ming Gu
{"title":"马科维茨遇上贝尔曼:投资组合管理中的知识强化学习","authors":"Gang Hu, Ming Gu","doi":"arxiv-2405.05449","DOIUrl":null,"url":null,"abstract":"Investment portfolios, central to finance, balance potential returns and\nrisks. This paper introduces a hybrid approach combining Markowitz's portfolio\ntheory with reinforcement learning, utilizing knowledge distillation for\ntraining agents. In particular, our proposed method, called KDD (Knowledge\nDistillation DDPG), consist of two training stages: supervised and\nreinforcement learning stages. The trained agents optimize portfolio assembly.\nA comparative analysis against standard financial models and AI frameworks,\nusing metrics like returns, the Sharpe ratio, and nine evaluation indices,\nreveals our model's superiority. It notably achieves the highest yield and\nSharpe ratio of 2.03, ensuring top profitability with the lowest risk in\ncomparable return scenarios.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markowitz Meets Bellman: Knowledge-distilled Reinforcement Learning for Portfolio Management\",\"authors\":\"Gang Hu, Ming Gu\",\"doi\":\"arxiv-2405.05449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investment portfolios, central to finance, balance potential returns and\\nrisks. This paper introduces a hybrid approach combining Markowitz's portfolio\\ntheory with reinforcement learning, utilizing knowledge distillation for\\ntraining agents. In particular, our proposed method, called KDD (Knowledge\\nDistillation DDPG), consist of two training stages: supervised and\\nreinforcement learning stages. The trained agents optimize portfolio assembly.\\nA comparative analysis against standard financial models and AI frameworks,\\nusing metrics like returns, the Sharpe ratio, and nine evaluation indices,\\nreveals our model's superiority. It notably achieves the highest yield and\\nSharpe ratio of 2.03, ensuring top profitability with the lowest risk in\\ncomparable return scenarios.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

投资组合是金融学的核心,它在潜在收益和风险之间取得平衡。本文介绍了一种将马科维茨的投资组合理论与强化学习相结合的混合方法,利用知识蒸馏来训练代理。具体而言,我们提出的方法称为 KDD(知识蒸馏 DDPG),包括两个训练阶段:监督学习阶段和强化学习阶段。通过与标准金融模型和人工智能框架进行比较分析,使用收益率、夏普比率和九个评估指数等指标,我们的模型显示了其优越性。通过与标准金融模型和人工智能框架进行比较分析,利用收益率、夏普比率和九个评估指数等指标,我们的模型显示出了其优越性,尤其是收益率最高,夏普比率达到 2.03,确保了在风险最低、收益率无法比拟的情况下获得最高收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markowitz Meets Bellman: Knowledge-distilled Reinforcement Learning for Portfolio Management
Investment portfolios, central to finance, balance potential returns and risks. This paper introduces a hybrid approach combining Markowitz's portfolio theory with reinforcement learning, utilizing knowledge distillation for training agents. In particular, our proposed method, called KDD (Knowledge Distillation DDPG), consist of two training stages: supervised and reinforcement learning stages. The trained agents optimize portfolio assembly. A comparative analysis against standard financial models and AI frameworks, using metrics like returns, the Sharpe ratio, and nine evaluation indices, reveals our model's superiority. It notably achieves the highest yield and Sharpe ratio of 2.03, ensuring top profitability with the lowest risk in comparable return scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信