顺序学习设置中 COBRA 的一些变化

Aryan Bhambu, Arabin Kumar Dey
{"title":"顺序学习设置中 COBRA 的一些变化","authors":"Aryan Bhambu, Arabin Kumar Dey","doi":"arxiv-2405.04539","DOIUrl":null,"url":null,"abstract":"This research paper introduces innovative approaches for multivariate time\nseries forecasting based on different variations of the combined regression\nstrategy. We use specific data preprocessing techniques which makes a radical\nchange in the behaviour of prediction. We compare the performance of the model\nbased on two types of hyper-parameter tuning Bayesian optimisation (BO) and\nUsual Grid search. Our proposed methodologies outperform all state-of-the-art\ncomparative models. We illustrate the methodologies through eight time series\ndatasets from three categories: cryptocurrency, stock index, and short-term\nload forecasting.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some variation of COBRA in sequential learning setup\",\"authors\":\"Aryan Bhambu, Arabin Kumar Dey\",\"doi\":\"arxiv-2405.04539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper introduces innovative approaches for multivariate time\\nseries forecasting based on different variations of the combined regression\\nstrategy. We use specific data preprocessing techniques which makes a radical\\nchange in the behaviour of prediction. We compare the performance of the model\\nbased on two types of hyper-parameter tuning Bayesian optimisation (BO) and\\nUsual Grid search. Our proposed methodologies outperform all state-of-the-art\\ncomparative models. We illustrate the methodologies through eight time series\\ndatasets from three categories: cryptocurrency, stock index, and short-term\\nload forecasting.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文介绍了基于不同组合回归策略的多元时间序列预测创新方法。我们采用了特定的数据预处理技术,从而彻底改变了预测行为。我们比较了基于两种超参数调整贝叶斯优化(BO)和Usual Grid搜索的模型性能。我们提出的方法优于所有先进的比较模型。我们通过加密货币、股票指数和短期负荷预测三个类别的八个时间序列数据集来说明这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some variation of COBRA in sequential learning setup
This research paper introduces innovative approaches for multivariate time series forecasting based on different variations of the combined regression strategy. We use specific data preprocessing techniques which makes a radical change in the behaviour of prediction. We compare the performance of the model based on two types of hyper-parameter tuning Bayesian optimisation (BO) and Usual Grid search. Our proposed methodologies outperform all state-of-the-art comparative models. We illustrate the methodologies through eight time series datasets from three categories: cryptocurrency, stock index, and short-term load forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信