实用且可扩展的量子储层计算

Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh
{"title":"实用且可扩展的量子储层计算","authors":"Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh","doi":"arxiv-2405.04799","DOIUrl":null,"url":null,"abstract":"Quantum Reservoir Computing leverages quantum systems to solve complex\ncomputational tasks with unprecedented efficiency and reduced energy\nconsumption. This paper presents a novel QRC framework utilizing a quantum\noptical reservoir composed of two-level atoms within a single-mode optical\ncavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a\nscalable and practically measurable reservoir that outperforms traditional\nclassical reservoir computing in both memory retention and nonlinear data\nprocessing. We evaluate the reservoir's performance through two primary tasks:\nthe prediction of time-series data via the Mackey-Glass task and the\nclassification of sine-square waveforms. Our results demonstrate significant\nenhancements in performance with increased numbers of atoms, supported by\nnon-destructive, continuous quantum measurements and polynomial regression\ntechniques. This study confirms the potential of QRC to offer a scalable and\nefficient solution for advanced computational challenges, marking a significant\nstep forward in the integration of quantum physics with machine learning\ntechnology.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical and Scalable Quantum Reservoir Computing\",\"authors\":\"Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh\",\"doi\":\"arxiv-2405.04799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Reservoir Computing leverages quantum systems to solve complex\\ncomputational tasks with unprecedented efficiency and reduced energy\\nconsumption. This paper presents a novel QRC framework utilizing a quantum\\noptical reservoir composed of two-level atoms within a single-mode optical\\ncavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a\\nscalable and practically measurable reservoir that outperforms traditional\\nclassical reservoir computing in both memory retention and nonlinear data\\nprocessing. We evaluate the reservoir's performance through two primary tasks:\\nthe prediction of time-series data via the Mackey-Glass task and the\\nclassification of sine-square waveforms. Our results demonstrate significant\\nenhancements in performance with increased numbers of atoms, supported by\\nnon-destructive, continuous quantum measurements and polynomial regression\\ntechniques. This study confirms the potential of QRC to offer a scalable and\\nefficient solution for advanced computational challenges, marking a significant\\nstep forward in the integration of quantum physics with machine learning\\ntechnology.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子存储计算(Quantum Reservoir Computing)利用量子系统以前所未有的效率和更低的能耗解决复杂的计算任务。本文提出了一种新颖的 QRC 框架,利用单模光腔内由两级原子组成的量子光库。利用杰恩斯-康明斯和塔维斯-康明斯模型,我们介绍了可升级和实际可测量的贮存器,它在内存保留和非线性数据处理方面都优于传统的经典贮存器计算。我们通过两个主要任务来评估蓄水池的性能:通过 Mackey-Glass 任务预测时间序列数据和正弦波形分类。我们的结果表明,在非破坏性、连续量子测量和多项式回归技术的支持下,随着原子数量的增加,性能得到了显著提高。这项研究证实了 QRC 在为高级计算挑战提供可扩展的高效解决方案方面的潜力,标志着量子物理与机器学习技术的整合向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical and Scalable Quantum Reservoir Computing
Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks with unprecedented efficiency and reduced energy consumption. This paper presents a novel QRC framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode optical cavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a scalable and practically measurable reservoir that outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing. We evaluate the reservoir's performance through two primary tasks: the prediction of time-series data via the Mackey-Glass task and the classification of sine-square waveforms. Our results demonstrate significant enhancements in performance with increased numbers of atoms, supported by non-destructive, continuous quantum measurements and polynomial regression techniques. This study confirms the potential of QRC to offer a scalable and efficient solution for advanced computational challenges, marking a significant step forward in the integration of quantum physics with machine learning technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信