用于数字识别的人一环主动域适应框架

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hao Xiu, Guanchen Li, Jie He, Xiaotong Zhang, Yue Qi
{"title":"用于数字识别的人一环主动域适应框架","authors":"Hao Xiu, Guanchen Li, Jie He, Xiaotong Zhang, Yue Qi","doi":"10.1080/08839514.2024.2349410","DOIUrl":null,"url":null,"abstract":"Domain adaptation can effectively enhance a model’s performance on target domain data with limited data. However, when some target domain labels are obtainable, training the model with both source ...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"36 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Human-In-One-Loop Active Domain Adaptation Framework for Digit Recognition\",\"authors\":\"Hao Xiu, Guanchen Li, Jie He, Xiaotong Zhang, Yue Qi\",\"doi\":\"10.1080/08839514.2024.2349410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation can effectively enhance a model’s performance on target domain data with limited data. However, when some target domain labels are obtainable, training the model with both source ...\",\"PeriodicalId\":8260,\"journal\":{\"name\":\"Applied Artificial Intelligence\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/08839514.2024.2349410\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/08839514.2024.2349410","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

域适应可以在数据有限的情况下有效提高模型在目标域数据上的性能。然而,当可以获得一些目标域标签时,同时使用源数据和目标域数据训练模型的效果并不理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Human-In-One-Loop Active Domain Adaptation Framework for Digit Recognition
Domain adaptation can effectively enhance a model’s performance on target domain data with limited data. However, when some target domain labels are obtainable, training the model with both source ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Artificial Intelligence
Applied Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
5.20
自引率
3.60%
发文量
106
审稿时长
6 months
期刊介绍: Applied Artificial Intelligence addresses concerns in applied research and applications of artificial intelligence (AI). The journal also acts as a medium for exchanging ideas and thoughts about impacts of AI research. Articles highlight advances in uses of AI systems for solving tasks in management, industry, engineering, administration, and education; evaluations of existing AI systems and tools, emphasizing comparative studies and user experiences; and the economic, social, and cultural impacts of AI. Papers on key applications, highlighting methods, time schedules, person-months needed, and other relevant material are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信