当板厚度和面内异质大小处于同一数量级时,包括生长理论在内的非线性 Cosserat 板的均质化问题

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Erick Pruchnicki
{"title":"当板厚度和面内异质大小处于同一数量级时,包括生长理论在内的非线性 Cosserat 板的均质化问题","authors":"Erick Pruchnicki","doi":"10.1177/10812865241243086","DOIUrl":null,"url":null,"abstract":"In this work, we present a new two-scale finite-strain plate theory for highly heterogeneous plates described by a repetitive periodic microstructure. Two scales exist, the macroscopic scale is linked to the entire plate and the microscopic one is linked to the size of the heterogeneity. This work aims to propose such a theory for thick plates in a nonlinear setting when the thickness and the size of heterogeneities are of the same order of magnitude. The homogenization theory for large deformation with growth is suitable for the modelization of nearly incompressible plant tissue. This model is suitable for wavy leaves. For thick plates, the transverse normal stress and transverse shearing are modelized at both microscopic and macroscopic levels. At the macroscopic level, we consider a nonlinear Cosserat plate model. At the microscopic level, we impose that the average of contribution of the microscopic displacement to rotation angles is equal to zero. We also deal with the problem of boundary layer problem near the lateral boundary. The model recently proposed by Pruchnicki is valid for thin heterogeneous plates; we present an extension for thick plates that takes into account both transverse normal stress and shearing. This model is equivalent to the first model presented but it involves a second-order derivative of the macroscopic displacement field.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"68 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of nonlinear Cosserat plate including growth theory when the thickness of the plate and the size of the in-plane heterogeneities are of the same order of magnitude\",\"authors\":\"Erick Pruchnicki\",\"doi\":\"10.1177/10812865241243086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a new two-scale finite-strain plate theory for highly heterogeneous plates described by a repetitive periodic microstructure. Two scales exist, the macroscopic scale is linked to the entire plate and the microscopic one is linked to the size of the heterogeneity. This work aims to propose such a theory for thick plates in a nonlinear setting when the thickness and the size of heterogeneities are of the same order of magnitude. The homogenization theory for large deformation with growth is suitable for the modelization of nearly incompressible plant tissue. This model is suitable for wavy leaves. For thick plates, the transverse normal stress and transverse shearing are modelized at both microscopic and macroscopic levels. At the macroscopic level, we consider a nonlinear Cosserat plate model. At the microscopic level, we impose that the average of contribution of the microscopic displacement to rotation angles is equal to zero. We also deal with the problem of boundary layer problem near the lateral boundary. The model recently proposed by Pruchnicki is valid for thin heterogeneous plates; we present an extension for thick plates that takes into account both transverse normal stress and shearing. This model is equivalent to the first model presented but it involves a second-order derivative of the macroscopic displacement field.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241243086\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241243086","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种新的双尺度有限应变板理论,适用于由重复周期性微结构描述的高度异质板。存在两个尺度,宏观尺度与整个板相关联,微观尺度与异质性的大小相关联。本研究旨在为非线性环境下的厚板提出这样一种理论,即异质体的厚度和大小处于同一数量级。大变形与生长的均质化理论适用于几乎不可压缩的植物组织建模。该模型适用于波浪形叶片。对于厚板,横向法向应力和横向剪切力在微观和宏观层面上都可以建模。在宏观层面,我们考虑了非线性 Cosserat 板模型。在微观层面,我们规定微观位移对旋转角的平均贡献等于零。我们还处理了横向边界附近的边界层问题。Pruchnicki 最近提出的模型适用于薄的异质板;我们提出了适用于厚板的扩展模型,该模型同时考虑了横向法向应力和剪切力。该模型等同于第一个模型,但涉及宏观位移场的二阶导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of nonlinear Cosserat plate including growth theory when the thickness of the plate and the size of the in-plane heterogeneities are of the same order of magnitude
In this work, we present a new two-scale finite-strain plate theory for highly heterogeneous plates described by a repetitive periodic microstructure. Two scales exist, the macroscopic scale is linked to the entire plate and the microscopic one is linked to the size of the heterogeneity. This work aims to propose such a theory for thick plates in a nonlinear setting when the thickness and the size of heterogeneities are of the same order of magnitude. The homogenization theory for large deformation with growth is suitable for the modelization of nearly incompressible plant tissue. This model is suitable for wavy leaves. For thick plates, the transverse normal stress and transverse shearing are modelized at both microscopic and macroscopic levels. At the macroscopic level, we consider a nonlinear Cosserat plate model. At the microscopic level, we impose that the average of contribution of the microscopic displacement to rotation angles is equal to zero. We also deal with the problem of boundary layer problem near the lateral boundary. The model recently proposed by Pruchnicki is valid for thin heterogeneous plates; we present an extension for thick plates that takes into account both transverse normal stress and shearing. This model is equivalent to the first model presented but it involves a second-order derivative of the macroscopic displacement field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信