高阶面和边元素的几何分解与高效实现

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Chunyu Chen,Long Chen,Xuehai Huang, Huayi Wei
{"title":"高阶面和边元素的几何分解与高效实现","authors":"Chunyu Chen,Long Chen,Xuehai Huang, Huayi Wei","doi":"10.4208/cicp.oa-2023-0249","DOIUrl":null,"url":null,"abstract":"This study investigates high-order face and edge elements in finite element\nmethods, with a focus on their geometric attributes, indexing management, and practical application. The exposition begins by a geometric decomposition of Lagrange\nfinite elements, setting the foundation for further analysis. The discussion then extends to $H$(div)-conforming and $H$(curl)-conforming finite element spaces, adopting\nvariable frames across differing sub-simplices. The imposition of tangential or normal\ncontinuity is achieved through the strategic selection of corresponding bases. The paper concludes with a focus on efficient indexing management strategies for degrees\nof freedom, offering practical guidance to researchers and engineers. It serves as a\ncomprehensive resource that bridges the gap between theory and practice.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"29 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Decomposition and Efficient Implementation of High Order Face and Edge Elements\",\"authors\":\"Chunyu Chen,Long Chen,Xuehai Huang, Huayi Wei\",\"doi\":\"10.4208/cicp.oa-2023-0249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates high-order face and edge elements in finite element\\nmethods, with a focus on their geometric attributes, indexing management, and practical application. The exposition begins by a geometric decomposition of Lagrange\\nfinite elements, setting the foundation for further analysis. The discussion then extends to $H$(div)-conforming and $H$(curl)-conforming finite element spaces, adopting\\nvariable frames across differing sub-simplices. The imposition of tangential or normal\\ncontinuity is achieved through the strategic selection of corresponding bases. The paper concludes with a focus on efficient indexing management strategies for degrees\\nof freedom, offering practical guidance to researchers and engineers. It serves as a\\ncomprehensive resource that bridges the gap between theory and practice.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0249\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0249","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了有限元方法中的高阶面元和边元,重点是它们的几何属性、索引管理和实际应用。论述从拉格朗日有限元的几何分解开始,为进一步分析奠定了基础。然后,讨论延伸到$H$(div)-conforming和$H$(curl)-conforming有限元空间,在不同的子简约中采用不同的框架。通过策略性地选择相应的基,可以实现切向或法向连续性。论文最后重点介绍了自由度的高效索引管理策略,为研究人员和工程师提供了实用指导。它是一种综合性资源,在理论与实践之间架起了一座桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Decomposition and Efficient Implementation of High Order Face and Edge Elements
This study investigates high-order face and edge elements in finite element methods, with a focus on their geometric attributes, indexing management, and practical application. The exposition begins by a geometric decomposition of Lagrange finite elements, setting the foundation for further analysis. The discussion then extends to $H$(div)-conforming and $H$(curl)-conforming finite element spaces, adopting variable frames across differing sub-simplices. The imposition of tangential or normal continuity is achieved through the strategic selection of corresponding bases. The paper concludes with a focus on efficient indexing management strategies for degrees of freedom, offering practical guidance to researchers and engineers. It serves as a comprehensive resource that bridges the gap between theory and practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信