Shijie Dong, Yunzhe Yang, Yujie Zhou, Xinzhong Li and Miaomiao Tang
{"title":"扭曲余弦高斯谢尔模型光束的传播特性","authors":"Shijie Dong, Yunzhe Yang, Yujie Zhou, Xinzhong Li and Miaomiao Tang","doi":"10.1088/2040-8986/ad4724","DOIUrl":null,"url":null,"abstract":"We introduce a new class of twisted sources with twisted cosine-Gaussian Schell-model correlation structure. The spectral intensity and the degree of coherence of the field upon propagation are discussed. Such novel twisted field is characterized by unfamiliar twist pattern and controllable far-zone lattice profile. It exhibits a Gaussian or a lattice-like intensity distribution in the source plane, while always turns into a lattice profile in the far zone. Notably, the array profile twists around the propagation axis instead of each element rotating about its own lobe center, which is different from most of the twisted array models. Moreover, the splitting tendency in the intensity distribution could be flexibly modulated by the twisted factor, the source coherence and the beam width. The coherence distribution could rotate in the same direction as the intensity with appropriate choice of parameters. Finally, the cross-spectral density’s phase distribution exhibits a spiral windmill structure and coherent singularities could be observed upon propagation.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"64 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation characteristics of twisted cosine-Gaussian Schell-model beams\",\"authors\":\"Shijie Dong, Yunzhe Yang, Yujie Zhou, Xinzhong Li and Miaomiao Tang\",\"doi\":\"10.1088/2040-8986/ad4724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new class of twisted sources with twisted cosine-Gaussian Schell-model correlation structure. The spectral intensity and the degree of coherence of the field upon propagation are discussed. Such novel twisted field is characterized by unfamiliar twist pattern and controllable far-zone lattice profile. It exhibits a Gaussian or a lattice-like intensity distribution in the source plane, while always turns into a lattice profile in the far zone. Notably, the array profile twists around the propagation axis instead of each element rotating about its own lobe center, which is different from most of the twisted array models. Moreover, the splitting tendency in the intensity distribution could be flexibly modulated by the twisted factor, the source coherence and the beam width. The coherence distribution could rotate in the same direction as the intensity with appropriate choice of parameters. Finally, the cross-spectral density’s phase distribution exhibits a spiral windmill structure and coherent singularities could be observed upon propagation.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad4724\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad4724","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Propagation characteristics of twisted cosine-Gaussian Schell-model beams
We introduce a new class of twisted sources with twisted cosine-Gaussian Schell-model correlation structure. The spectral intensity and the degree of coherence of the field upon propagation are discussed. Such novel twisted field is characterized by unfamiliar twist pattern and controllable far-zone lattice profile. It exhibits a Gaussian or a lattice-like intensity distribution in the source plane, while always turns into a lattice profile in the far zone. Notably, the array profile twists around the propagation axis instead of each element rotating about its own lobe center, which is different from most of the twisted array models. Moreover, the splitting tendency in the intensity distribution could be flexibly modulated by the twisted factor, the source coherence and the beam width. The coherence distribution could rotate in the same direction as the intensity with appropriate choice of parameters. Finally, the cross-spectral density’s phase distribution exhibits a spiral windmill structure and coherent singularities could be observed upon propagation.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.