{"title":"将梯形光栅和光栅结合使用的单次泵探技术,时间窗口为 109 ps","authors":"Tianchen Yu, Junyi Yang, Zhongguo Li, Xingzhi Wu, Yu Fang, Yong Yang, Yinglin Song","doi":"10.1088/2040-8986/ad44af","DOIUrl":null,"url":null,"abstract":"In this study, using only a single pulse, pump-probe measurement with a large time window of more than 100 ps is implemented. A commercial grating is used to encode a time window of ∼56 ps in a single pulse; therefore, there is no need for machining customization. In addition, in this technique, the grating surface is accurately imaged, eliminating the image blur problem caused by phase differences in previous echelon-based techniques. Moreover, to make full use of the grating surface and obtain a larger time window, a simple reflection echelon is combined that matches the grating in the time window. This combination encoding strategy results in a total time window of ∼109 ps and maintains accurate imaging of the grating surface. This time window is an order of magnitude greater than the maximum reported values of the echelon encoding strategy and the angle beam encoding strategy. To demonstrate this single-shot pump-probe technique, the two-photon absorption process of ZnSe and the excited-state absorption process of a symmetrical phenoxazinium bromine salt were studied. The possibility of further improving the experimental setup is also discussed.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"5 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-shot pump-probe technique by the combination of an echelon and a grating with a time window of 109 ps\",\"authors\":\"Tianchen Yu, Junyi Yang, Zhongguo Li, Xingzhi Wu, Yu Fang, Yong Yang, Yinglin Song\",\"doi\":\"10.1088/2040-8986/ad44af\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, using only a single pulse, pump-probe measurement with a large time window of more than 100 ps is implemented. A commercial grating is used to encode a time window of ∼56 ps in a single pulse; therefore, there is no need for machining customization. In addition, in this technique, the grating surface is accurately imaged, eliminating the image blur problem caused by phase differences in previous echelon-based techniques. Moreover, to make full use of the grating surface and obtain a larger time window, a simple reflection echelon is combined that matches the grating in the time window. This combination encoding strategy results in a total time window of ∼109 ps and maintains accurate imaging of the grating surface. This time window is an order of magnitude greater than the maximum reported values of the echelon encoding strategy and the angle beam encoding strategy. To demonstrate this single-shot pump-probe technique, the two-photon absorption process of ZnSe and the excited-state absorption process of a symmetrical phenoxazinium bromine salt were studied. The possibility of further improving the experimental setup is also discussed.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad44af\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad44af","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Single-shot pump-probe technique by the combination of an echelon and a grating with a time window of 109 ps
In this study, using only a single pulse, pump-probe measurement with a large time window of more than 100 ps is implemented. A commercial grating is used to encode a time window of ∼56 ps in a single pulse; therefore, there is no need for machining customization. In addition, in this technique, the grating surface is accurately imaged, eliminating the image blur problem caused by phase differences in previous echelon-based techniques. Moreover, to make full use of the grating surface and obtain a larger time window, a simple reflection echelon is combined that matches the grating in the time window. This combination encoding strategy results in a total time window of ∼109 ps and maintains accurate imaging of the grating surface. This time window is an order of magnitude greater than the maximum reported values of the echelon encoding strategy and the angle beam encoding strategy. To demonstrate this single-shot pump-probe technique, the two-photon absorption process of ZnSe and the excited-state absorption process of a symmetrical phenoxazinium bromine salt were studied. The possibility of further improving the experimental setup is also discussed.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.