棱镜化

Vladimir Drinfeld
{"title":"棱镜化","authors":"Vladimir Drinfeld","doi":"10.1007/s00029-024-00937-3","DOIUrl":null,"url":null,"abstract":"<p>The eventual goal is to construct three related “prismatization” functors from the category of <i>p</i>-adic formal schemes to that of formal stacks. This should provide a good category of coefficients for prismatic cohomology in the spirit of <i>F</i>-gauges. In this article we define and study the three versions of the prismatization of <span>\\({{\\,\\mathrm{{Spf}}\\,}}{\\mathbb {Z}}_p\\)</span>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prismatization\",\"authors\":\"Vladimir Drinfeld\",\"doi\":\"10.1007/s00029-024-00937-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The eventual goal is to construct three related “prismatization” functors from the category of <i>p</i>-adic formal schemes to that of formal stacks. This should provide a good category of coefficients for prismatic cohomology in the spirit of <i>F</i>-gauges. In this article we define and study the three versions of the prismatization of <span>\\\\({{\\\\,\\\\mathrm{{Spf}}\\\\,}}{\\\\mathbb {Z}}_p\\\\)</span>.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00937-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00937-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最终目标是构建三个相关的 "棱柱化 "函数,从 p-adic 形式方案范畴到形式堆栈范畴。这将为F-高斯精神中的棱柱同调提供一个很好的系数范畴。在本文中,我们定义并研究了棱镜化的({{\,\mathrm{{Spf}}\,}}{{mathbb {Z}}_p\ )的三个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prismatization

The eventual goal is to construct three related “prismatization” functors from the category of p-adic formal schemes to that of formal stacks. This should provide a good category of coefficients for prismatic cohomology in the spirit of F-gauges. In this article we define and study the three versions of the prismatization of \({{\,\mathrm{{Spf}}\,}}{\mathbb {Z}}_p\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信