为堆叠式封面建立数据

Eric Ahlqvist
{"title":"为堆叠式封面建立数据","authors":"Eric Ahlqvist","doi":"10.1007/s00029-024-00939-1","DOIUrl":null,"url":null,"abstract":"<p>We define <i>stacky building data</i> for <i>stacky covers</i> in the spirit of Pardini and give an equivalence of (2,1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme <i>S</i> is defined over a field, we give a criterion for when a <i>birational</i> building datum comes from a tamely ramified cover for a finite abelian group scheme, generalizing a result of Biswas–Borne.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building data for stacky covers\",\"authors\":\"Eric Ahlqvist\",\"doi\":\"10.1007/s00029-024-00939-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define <i>stacky building data</i> for <i>stacky covers</i> in the spirit of Pardini and give an equivalence of (2,1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme <i>S</i> is defined over a field, we give a criterion for when a <i>birational</i> building datum comes from a tamely ramified cover for a finite abelian group scheme, generalizing a result of Biswas–Borne.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00939-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00939-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们根据帕尔迪尼的精神定义了堆叠盖的堆叠建筑数据,并给出了堆叠盖范畴与堆叠建筑数据范畴之间的 (2,1)- 范畴的等价性。我们证明了每个堆叠覆盖都是奥尔森和博尔内-维斯托利意义上的平根堆叠,并给出了使用堆叠建筑数据作为根堆叠的内在描述。当基方案 S 定义在一个域上时,我们给出了有限无性群方案的双向建构数据何时来自驯化斜面盖的标准,并推广了比斯沃斯-伯恩(Biswas-Borne)的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Building data for stacky covers

Building data for stacky covers

We define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2,1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a birational building datum comes from a tamely ramified cover for a finite abelian group scheme, generalizing a result of Biswas–Borne.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信