A. N. Stashenko, T. I. Batova, T. K. Obukhova, N. V. Kolesnichenko
{"title":"淤浆反应器中以二甲醚为原料合成低级烯烃的 Mg/HZSM-5 催化剂失活研究","authors":"A. N. Stashenko, T. I. Batova, T. K. Obukhova, N. V. Kolesnichenko","doi":"10.1134/S2070050424010094","DOIUrl":null,"url":null,"abstract":"<p>Under slurry reactor conditions, the products of condensation are generrally formed on strong Mg/HZSM-5 acid sites independently of the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio in the zeolite. The composition of condensation products remains virtually unchanged as the molar ratio grows and basically consists of trimethyl and tetramethyl benzenes, but their content falls as the volume of mesopores grows with increasing SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>. This lowers the hindrances to diffusion and the contribution from secondary reactions to improve the removal of coke precursors from the zeolite’s surface and favorably affect the catalyst’s activity (DME conversion doubles). The composition of reaction products changes slightly with an increase in the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio, and the total selectivity toward lower olefins is ~70 wt %. A rapid loss in Mg/HZSM-5 activity upon extending the period of operation under slurry reactor conditions is not due to coking, but to the catalyst being clogged by dispersion medium (polydimethylsiloxane) decomposition products.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 1","pages":"7 - 13"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deactivation of Mg/HZSM-5 Catalysts for the Synthesis of Lower Olefins from Dimethyl Ether in a Slurry Reactor\",\"authors\":\"A. N. Stashenko, T. I. Batova, T. K. Obukhova, N. V. Kolesnichenko\",\"doi\":\"10.1134/S2070050424010094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under slurry reactor conditions, the products of condensation are generrally formed on strong Mg/HZSM-5 acid sites independently of the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio in the zeolite. The composition of condensation products remains virtually unchanged as the molar ratio grows and basically consists of trimethyl and tetramethyl benzenes, but their content falls as the volume of mesopores grows with increasing SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>. This lowers the hindrances to diffusion and the contribution from secondary reactions to improve the removal of coke precursors from the zeolite’s surface and favorably affect the catalyst’s activity (DME conversion doubles). The composition of reaction products changes slightly with an increase in the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio, and the total selectivity toward lower olefins is ~70 wt %. A rapid loss in Mg/HZSM-5 activity upon extending the period of operation under slurry reactor conditions is not due to coking, but to the catalyst being clogged by dispersion medium (polydimethylsiloxane) decomposition products.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"16 1\",\"pages\":\"7 - 13\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050424010094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424010094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Deactivation of Mg/HZSM-5 Catalysts for the Synthesis of Lower Olefins from Dimethyl Ether in a Slurry Reactor
Under slurry reactor conditions, the products of condensation are generrally formed on strong Mg/HZSM-5 acid sites independently of the SiO2/Al2O3 molar ratio in the zeolite. The composition of condensation products remains virtually unchanged as the molar ratio grows and basically consists of trimethyl and tetramethyl benzenes, but their content falls as the volume of mesopores grows with increasing SiO2/Al2O3. This lowers the hindrances to diffusion and the contribution from secondary reactions to improve the removal of coke precursors from the zeolite’s surface and favorably affect the catalyst’s activity (DME conversion doubles). The composition of reaction products changes slightly with an increase in the SiO2/Al2O3 molar ratio, and the total selectivity toward lower olefins is ~70 wt %. A rapid loss in Mg/HZSM-5 activity upon extending the period of operation under slurry reactor conditions is not due to coking, but to the catalyst being clogged by dispersion medium (polydimethylsiloxane) decomposition products.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.