q-matroid 的循环平面

Pub Date : 2024-05-09 DOI:10.1007/s10801-024-01321-2
Gianira N. Alfarano, Eimear Byrne
{"title":"q-matroid 的循环平面","authors":"Gianira N. Alfarano, Eimear Byrne","doi":"10.1007/s10801-024-01321-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper we develop the theory of cyclic flats of <i>q</i>-matroids. We show that the cyclic flats, together with their ranks, uniquely determine a <i>q</i>-matroid and hence derive a new <i>q</i>-cryptomorphism. We introduce the notion of <span>\\(\\mathbb {F}_{q^m}\\)</span>-independence of an <span>\\(\\mathbb {F}_q\\)</span>-subspace of <span>\\(\\mathbb {F}_q^n\\)</span> and we show that <i>q</i>-matroids generalize this concept, in the same way that matroids generalize the notion of linear independence of vectors over a given field.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cyclic flats of a q-matroid\",\"authors\":\"Gianira N. Alfarano, Eimear Byrne\",\"doi\":\"10.1007/s10801-024-01321-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we develop the theory of cyclic flats of <i>q</i>-matroids. We show that the cyclic flats, together with their ranks, uniquely determine a <i>q</i>-matroid and hence derive a new <i>q</i>-cryptomorphism. We introduce the notion of <span>\\\\(\\\\mathbb {F}_{q^m}\\\\)</span>-independence of an <span>\\\\(\\\\mathbb {F}_q\\\\)</span>-subspace of <span>\\\\(\\\\mathbb {F}_q^n\\\\)</span> and we show that <i>q</i>-matroids generalize this concept, in the same way that matroids generalize the notion of linear independence of vectors over a given field.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01321-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01321-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们发展了 q-matroids的循环平面理论。我们证明了循环平面连同它们的等级唯一地决定了一个 q-matroid,并由此推导出一个新的 q-密码同构。我们引入了 \(\mathbb {F}_{q^m}\)-independence of an \(\mathbb {F}_q\)-subspace of \(\mathbb {F}_q^n\)子空间的 \(\mathbb {F}_{q^m}\)-independence 概念,并证明了 q-matroids 对这个概念的概括,就像 matroids 对给定域上向量的线性独立性概念的概括一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The cyclic flats of a q-matroid

分享
查看原文
The cyclic flats of a q-matroid

In this paper we develop the theory of cyclic flats of q-matroids. We show that the cyclic flats, together with their ranks, uniquely determine a q-matroid and hence derive a new q-cryptomorphism. We introduce the notion of \(\mathbb {F}_{q^m}\)-independence of an \(\mathbb {F}_q\)-subspace of \(\mathbb {F}_q^n\) and we show that q-matroids generalize this concept, in the same way that matroids generalize the notion of linear independence of vectors over a given field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信