{"title":"将二氧化碳催化氢化作为生产有价值化学品的一种方法","authors":"I. A. Makaryan, I. V. Sedov, V. I. Savchenko","doi":"10.1134/S2070050424010045","DOIUrl":null,"url":null,"abstract":"<p>The aim of this review is to summarize and comparatively analyze recent reports on studying carbon dioxide conversion to methanol, dimethyl ether, and C<sub>2+</sub> hydrocarbons, in particular, olefins, by catalytic hydrogenation. It is shown that the main approaches to providing high activity and selectivity of these processes are the targeted design of catalysts and the selection of conditions for hydrogenation processes, in particular, the use of supercritical CO<sub>2</sub> and procedures that are alternative to conventional physicochemical methods for CO<sub>2</sub> activation (electrocatalysis, photocatalysis).</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 1","pages":"14 - 38"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic Hydrogenation of Carbon Dioxide as a Method to Produce Valuable Chemicals\",\"authors\":\"I. A. Makaryan, I. V. Sedov, V. I. Savchenko\",\"doi\":\"10.1134/S2070050424010045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this review is to summarize and comparatively analyze recent reports on studying carbon dioxide conversion to methanol, dimethyl ether, and C<sub>2+</sub> hydrocarbons, in particular, olefins, by catalytic hydrogenation. It is shown that the main approaches to providing high activity and selectivity of these processes are the targeted design of catalysts and the selection of conditions for hydrogenation processes, in particular, the use of supercritical CO<sub>2</sub> and procedures that are alternative to conventional physicochemical methods for CO<sub>2</sub> activation (electrocatalysis, photocatalysis).</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"16 1\",\"pages\":\"14 - 38\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050424010045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424010045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Catalytic Hydrogenation of Carbon Dioxide as a Method to Produce Valuable Chemicals
The aim of this review is to summarize and comparatively analyze recent reports on studying carbon dioxide conversion to methanol, dimethyl ether, and C2+ hydrocarbons, in particular, olefins, by catalytic hydrogenation. It is shown that the main approaches to providing high activity and selectivity of these processes are the targeted design of catalysts and the selection of conditions for hydrogenation processes, in particular, the use of supercritical CO2 and procedures that are alternative to conventional physicochemical methods for CO2 activation (electrocatalysis, photocatalysis).
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.