{"title":"具有 m-DCI 特性的二面群","authors":"Jin-Hua Xie, Yan-Quan Feng, Young Soo Kwon","doi":"10.1007/s10801-024-01327-w","DOIUrl":null,"url":null,"abstract":"<p>A Cayley digraph <span>\\(\\textrm{Cay}(G,S)\\)</span> of a group <i>G</i> with respect to a subset <i>S</i> of <i>G</i> is called a CI-digraph if for every Cayley digraph <span>\\(\\textrm{Cay}(G,T)\\)</span> isomorphic to <span>\\(\\textrm{Cay}(G,S)\\)</span>, there exists an <span>\\(\\alpha \\in \\textrm{Aut}(G)\\)</span> such that <span>\\(S^\\alpha =T\\)</span>. For a positive integer <i>m</i>, <i>G</i> is said to have the <i>m</i>-DCI property if all Cayley digraphs of <i>G</i> with out-valency <i>m</i> are CI-digraphs. Li (European J Combin 18:655–665, 1997) gave a necessary condition for cyclic groups to have the <i>m</i>-DCI property, and in this paper, we find a necessary condition for dihedral groups to have the <i>m</i>-DCI property. Let <span>\\(\\textrm{D}_{2n}\\)</span> be the dihedral group of order 2<i>n</i>, and assume that <span>\\(\\textrm{D}_{2n}\\)</span> has the <i>m</i>-DCI property for some <span>\\(1 \\le m\\le n-1\\)</span>. It is shown that <i>n</i> is odd, and if further <span>\\(p+1\\le m\\le n-1\\)</span> for an odd prime divisor <i>p</i> of <i>n</i>, then <span>\\(p^2\\not \\mid n\\)</span>. Furthermore, if <i>n</i> is a power of a prime <i>q</i>, then <span>\\(\\textrm{D}_{2n}\\)</span> has the <i>m</i>-DCI property if and only if either <span>\\(n=q\\)</span>, or <i>q</i> is odd and <span>\\(1\\le m\\le q\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihedral groups with the m-DCI property\",\"authors\":\"Jin-Hua Xie, Yan-Quan Feng, Young Soo Kwon\",\"doi\":\"10.1007/s10801-024-01327-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Cayley digraph <span>\\\\(\\\\textrm{Cay}(G,S)\\\\)</span> of a group <i>G</i> with respect to a subset <i>S</i> of <i>G</i> is called a CI-digraph if for every Cayley digraph <span>\\\\(\\\\textrm{Cay}(G,T)\\\\)</span> isomorphic to <span>\\\\(\\\\textrm{Cay}(G,S)\\\\)</span>, there exists an <span>\\\\(\\\\alpha \\\\in \\\\textrm{Aut}(G)\\\\)</span> such that <span>\\\\(S^\\\\alpha =T\\\\)</span>. For a positive integer <i>m</i>, <i>G</i> is said to have the <i>m</i>-DCI property if all Cayley digraphs of <i>G</i> with out-valency <i>m</i> are CI-digraphs. Li (European J Combin 18:655–665, 1997) gave a necessary condition for cyclic groups to have the <i>m</i>-DCI property, and in this paper, we find a necessary condition for dihedral groups to have the <i>m</i>-DCI property. Let <span>\\\\(\\\\textrm{D}_{2n}\\\\)</span> be the dihedral group of order 2<i>n</i>, and assume that <span>\\\\(\\\\textrm{D}_{2n}\\\\)</span> has the <i>m</i>-DCI property for some <span>\\\\(1 \\\\le m\\\\le n-1\\\\)</span>. It is shown that <i>n</i> is odd, and if further <span>\\\\(p+1\\\\le m\\\\le n-1\\\\)</span> for an odd prime divisor <i>p</i> of <i>n</i>, then <span>\\\\(p^2\\\\not \\\\mid n\\\\)</span>. Furthermore, if <i>n</i> is a power of a prime <i>q</i>, then <span>\\\\(\\\\textrm{D}_{2n}\\\\)</span> has the <i>m</i>-DCI property if and only if either <span>\\\\(n=q\\\\)</span>, or <i>q</i> is odd and <span>\\\\(1\\\\le m\\\\le q\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01327-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01327-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果对于每个 Cayley 图 (\textrm{Cay}(G. T))都与 (\textrm{Cay}(G,S)\)同构,那么与 G 的子集 S 有关的群 G 的 Cayley 图 (\textrm{Cay}(G,S)\)被称为 CI 图、T) 同构于 (textrm{Cay}(G,S)),存在一个 (textrm{Aut}(G)中的α),使得 (S^α =T)。对于正整数 m,如果 G 的所有 Cayley digraphs 的出值 m 都是 CI digraphs,那么 G 就具有 m-DCI 属性。李(European J Combin 18:655-665, 1997)给出了循环群具有 m-DCI 性质的必要条件,在本文中,我们找到了二面群具有 m-DCI 性质的必要条件。让 \(\textrm{D}_{2n}\) 是阶数为 2n 的二面群,并假设 \(\textrm{D}_{2n}\) 对于某个 \(1 \le m\le n-1\) 具有 m-DCI 属性。事实证明,n是奇数,如果进一步对n的奇素除数p来说\(p+1\le m\le n-1\),那么\(p^2not\mid n\).此外,如果n是一个素数q的幂,那么当且仅当要么(n=q),要么q是奇数且(1le mle q)时,\(textrm{D}_{2n}\)具有m-DCI性质。
A Cayley digraph \(\textrm{Cay}(G,S)\) of a group G with respect to a subset S of G is called a CI-digraph if for every Cayley digraph \(\textrm{Cay}(G,T)\) isomorphic to \(\textrm{Cay}(G,S)\), there exists an \(\alpha \in \textrm{Aut}(G)\) such that \(S^\alpha =T\). For a positive integer m, G is said to have the m-DCI property if all Cayley digraphs of G with out-valency m are CI-digraphs. Li (European J Combin 18:655–665, 1997) gave a necessary condition for cyclic groups to have the m-DCI property, and in this paper, we find a necessary condition for dihedral groups to have the m-DCI property. Let \(\textrm{D}_{2n}\) be the dihedral group of order 2n, and assume that \(\textrm{D}_{2n}\) has the m-DCI property for some \(1 \le m\le n-1\). It is shown that n is odd, and if further \(p+1\le m\le n-1\) for an odd prime divisor p of n, then \(p^2\not \mid n\). Furthermore, if n is a power of a prime q, then \(\textrm{D}_{2n}\) has the m-DCI property if and only if either \(n=q\), or q is odd and \(1\le m\le q\).