双层膜的层间气体传输阻力

IF 2 Q4 CHEMISTRY, PHYSICAL
V. V. Ugrozov
{"title":"双层膜的层间气体传输阻力","authors":"V. V. Ugrozov","doi":"10.1134/S2517751624010062","DOIUrl":null,"url":null,"abstract":"<p>To describe gas transport through a bilayer membrane with a thin selective layer on the surface of a highly permeable gutter layer, it is for the first time proposed to take into account the interlayer resistance arising at the boundary of two membrane layers and a model of gas transport through a bilayer membrane is developed. Analytical expressions for the permeability and selectivity of such a membrane are obtained taking into account this resistance. It is shown that interlayer resistance can noticeably affect the transport characteristics of the membrane. It is found that, even in the case of a low diffusion resistance to gas transport of the gutter layer, its sorption and kinetic parameters affect the permeability and selectivity of the membrane as a whole.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 1","pages":"9 - 14"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interlayer Resistance of a Bilayer Membrane to Gas Transport\",\"authors\":\"V. V. Ugrozov\",\"doi\":\"10.1134/S2517751624010062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To describe gas transport through a bilayer membrane with a thin selective layer on the surface of a highly permeable gutter layer, it is for the first time proposed to take into account the interlayer resistance arising at the boundary of two membrane layers and a model of gas transport through a bilayer membrane is developed. Analytical expressions for the permeability and selectivity of such a membrane are obtained taking into account this resistance. It is shown that interlayer resistance can noticeably affect the transport characteristics of the membrane. It is found that, even in the case of a low diffusion resistance to gas transport of the gutter layer, its sorption and kinetic parameters affect the permeability and selectivity of the membrane as a whole.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"6 1\",\"pages\":\"9 - 14\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751624010062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624010062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 为了描述气体通过双层膜的传输情况,首次提出要考虑在两层膜边界产生的层间阻力,并建立了气体通过双层膜传输的模型。考虑到这种阻力,我们得到了这种膜的渗透性和选择性的分析表达式。结果表明,层间阻力会明显影响膜的传输特性。研究发现,即使水沟层的气体传输扩散阻力较低,其吸附和动力学参数也会影响整个膜的渗透性和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interlayer Resistance of a Bilayer Membrane to Gas Transport

Interlayer Resistance of a Bilayer Membrane to Gas Transport

Interlayer Resistance of a Bilayer Membrane to Gas Transport

To describe gas transport through a bilayer membrane with a thin selective layer on the surface of a highly permeable gutter layer, it is for the first time proposed to take into account the interlayer resistance arising at the boundary of two membrane layers and a model of gas transport through a bilayer membrane is developed. Analytical expressions for the permeability and selectivity of such a membrane are obtained taking into account this resistance. It is shown that interlayer resistance can noticeably affect the transport characteristics of the membrane. It is found that, even in the case of a low diffusion resistance to gas transport of the gutter layer, its sorption and kinetic parameters affect the permeability and selectivity of the membrane as a whole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
31.20%
发文量
38
期刊介绍: The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信