分数 Orlicz-Sobolev 空间中的多值椭圆包容

IF 0.7 4区 数学 Q2 MATHEMATICS
H. El-Houari, S. Hajar, H. Moussa
{"title":"分数 Orlicz-Sobolev 空间中的多值椭圆包容","authors":"H. El-Houari, S. Hajar, H. Moussa","doi":"10.1007/s11785-024-01541-1","DOIUrl":null,"url":null,"abstract":"<p>In this research, we analyze the existence of nontrivial solution for a class of non-local multivalued elliptic problems on bounded domain with Direchlet boundary condition. The primary techniques employed consist of variational methods for Locally Lipschitz functional applied to fractional Orlicz–Sobolev space. Our main results generalize some recent findings in the literature to non-smooth cases.\n</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"24 18_suppl 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivalued Elliptic Inclusion in Fractional Orlicz–Sobolev Spaces\",\"authors\":\"H. El-Houari, S. Hajar, H. Moussa\",\"doi\":\"10.1007/s11785-024-01541-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this research, we analyze the existence of nontrivial solution for a class of non-local multivalued elliptic problems on bounded domain with Direchlet boundary condition. The primary techniques employed consist of variational methods for Locally Lipschitz functional applied to fractional Orlicz–Sobolev space. Our main results generalize some recent findings in the literature to non-smooth cases.\\n</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"24 18_suppl 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01541-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01541-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们分析了一类具有 Direchlet 边界条件的有界域上的非局部多值椭圆问题的非微观解的存在性。所采用的主要技术包括应用于分数 Orlicz-Sobolev 空间的局部 Lipschitz 函数的变分法。我们的主要结果将文献中的一些最新发现推广到了非光滑情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivalued Elliptic Inclusion in Fractional Orlicz–Sobolev Spaces

In this research, we analyze the existence of nontrivial solution for a class of non-local multivalued elliptic problems on bounded domain with Direchlet boundary condition. The primary techniques employed consist of variational methods for Locally Lipschitz functional applied to fractional Orlicz–Sobolev space. Our main results generalize some recent findings in the literature to non-smooth cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信