关于奇阶微分算子的布洛赫特征值、带函数和带周期矩阵系数

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
O. A. Veliev
{"title":"关于奇阶微分算子的布洛赫特征值、带函数和带周期矩阵系数","authors":"O. A. Veliev","doi":"10.1007/s11005-024-01810-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the Bloch eigenvalues, band functions and bands of the self-adjoint differential operator <i>L</i> generated by the differential expression of odd order <i>n</i> with the <span>\\(m\\times m\\)</span> periodic matrix coefficients, where <span>\\(n&gt;1.\\)</span> We study the localizations of the Bloch eigenvalues and continuity of the band functions and prove that each point of the set <span>\\(\\left[ (2\\pi N)^{n},\\infty \\right) \\cup (-\\infty ,(-2\\pi N)^{n}]\\)</span> belongs to at least <i>m</i> bands, where <i>N</i> is the smallest integer satisfying <span>\\(N\\ge \\pi ^{-2}M+1\\)</span> and <i>M</i> is the sum of the norms of the coefficients. Moreover, we prove that if <span>\\(M\\le \\ \\pi ^{2}2^{-n+1/2}\\)</span>, then each point of the real line belong to at least <i>m</i> bands.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Bloch eigenvalues, band functions and bands of the differential operator of odd order with the periodic matrix coefficients\",\"authors\":\"O. A. Veliev\",\"doi\":\"10.1007/s11005-024-01810-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the Bloch eigenvalues, band functions and bands of the self-adjoint differential operator <i>L</i> generated by the differential expression of odd order <i>n</i> with the <span>\\\\(m\\\\times m\\\\)</span> periodic matrix coefficients, where <span>\\\\(n&gt;1.\\\\)</span> We study the localizations of the Bloch eigenvalues and continuity of the band functions and prove that each point of the set <span>\\\\(\\\\left[ (2\\\\pi N)^{n},\\\\infty \\\\right) \\\\cup (-\\\\infty ,(-2\\\\pi N)^{n}]\\\\)</span> belongs to at least <i>m</i> bands, where <i>N</i> is the smallest integer satisfying <span>\\\\(N\\\\ge \\\\pi ^{-2}M+1\\\\)</span> and <i>M</i> is the sum of the norms of the coefficients. Moreover, we prove that if <span>\\\\(M\\\\le \\\\ \\\\pi ^{2}2^{-n+1/2}\\\\)</span>, then each point of the real line belong to at least <i>m</i> bands.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01810-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01810-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了由奇数阶 n 的微分表达式与 \(m\times m\) 周期矩阵系数生成的自相关微分算子 L 的布洛赫特征值、带函数和带,其中 \(n>1.\我们研究了布洛赫特征值的定位和带状函数的连续性,并证明了集合 \(left[ (2\pi N)^{n},\infty \right) \cup (-\infty 、(-2\pi N)^{n}]\) 至少属于 m 个带,其中 N 是满足 \(N\ge \pi ^{-2}M+1\) 的最小整数,M 是系数的规范之和。此外,我们证明,如果 \(M\le \pi ^{2}2^{-n+1/2}\) ,那么实线上的每个点至少属于 m 个带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Bloch eigenvalues, band functions and bands of the differential operator of odd order with the periodic matrix coefficients

In this paper, we consider the Bloch eigenvalues, band functions and bands of the self-adjoint differential operator L generated by the differential expression of odd order n with the \(m\times m\) periodic matrix coefficients, where \(n>1.\) We study the localizations of the Bloch eigenvalues and continuity of the band functions and prove that each point of the set \(\left[ (2\pi N)^{n},\infty \right) \cup (-\infty ,(-2\pi N)^{n}]\) belongs to at least m bands, where N is the smallest integer satisfying \(N\ge \pi ^{-2}M+1\) and M is the sum of the norms of the coefficients. Moreover, we prove that if \(M\le \ \pi ^{2}2^{-n+1/2}\), then each point of the real line belong to at least m bands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信