动力基希贝格-菲利普斯定理

IF 4.9 1区 数学 Q1 MATHEMATICS
James Gabe, Gábor Szabó
{"title":"动力基希贝格-菲利普斯定理","authors":"James Gabe, Gábor Szabó","doi":"10.4310/acta.2024.v232.n1.a1","DOIUrl":null,"url":null,"abstract":"Let $G$ be a second-countable, locally compact group. In this article we study amenable $G$-actions on Kirchberg algebras that admit an approximately central embedding of a canonical quasi-free action on the Cuntz algebra $\\mathcal{O}_{^\\infty}$. If $G$ is discrete, this coincides with the class of amenable and outer $G-$actions on Kirchberg algebras. We show that the resulting $G-C^\\ast$-dynamical systems are classified by equivariant Kasparov theory, up to cocycle conjugacy. This is the first classification theory of its kind applicable to actions of arbitrary locally compact groups. Among various applications, our main result solves a conjecture of Izumi for actions of discrete amenable torsion-free groups, and recovers the main results of recent work by Izumi–Matui for actions of poly-$\\mathbb{Z}$ groups.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":"2 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dynamical Kirchberg–Phillips theorem\",\"authors\":\"James Gabe, Gábor Szabó\",\"doi\":\"10.4310/acta.2024.v232.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a second-countable, locally compact group. In this article we study amenable $G$-actions on Kirchberg algebras that admit an approximately central embedding of a canonical quasi-free action on the Cuntz algebra $\\\\mathcal{O}_{^\\\\infty}$. If $G$ is discrete, this coincides with the class of amenable and outer $G-$actions on Kirchberg algebras. We show that the resulting $G-C^\\\\ast$-dynamical systems are classified by equivariant Kasparov theory, up to cocycle conjugacy. This is the first classification theory of its kind applicable to actions of arbitrary locally compact groups. Among various applications, our main result solves a conjecture of Izumi for actions of discrete amenable torsion-free groups, and recovers the main results of recent work by Izumi–Matui for actions of poly-$\\\\mathbb{Z}$ groups.\",\"PeriodicalId\":50895,\"journal\":{\"name\":\"Acta Mathematica\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2024.v232.n1.a1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2024.v232.n1.a1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 $G$ 是一个二次可数局部紧密群。在本文中,我们将研究基希贝格数组上的可与外$G-$作用,这些作用可以近似地中心嵌入康兹代数$\mathcal{O}_{^\infty}$上的经典准无作用。如果 $G$ 是离散的,那么它就与基希贝格代数上的可amenable 和外$G-$作用类重合。我们证明,由此产生的 $G-C^\ast$ 动力系统是由等变卡斯帕罗夫理论分类的,直到环共轭。这是第一个适用于任意局部紧凑群作用的分类理论。在各种应用中,我们的主要结果解决了 Izumi 关于离散可逆无扭群作用的猜想,并恢复了 Izumi-Matui 最近关于多-$\mathbb{Z}$ 群作用的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dynamical Kirchberg–Phillips theorem
Let $G$ be a second-countable, locally compact group. In this article we study amenable $G$-actions on Kirchberg algebras that admit an approximately central embedding of a canonical quasi-free action on the Cuntz algebra $\mathcal{O}_{^\infty}$. If $G$ is discrete, this coincides with the class of amenable and outer $G-$actions on Kirchberg algebras. We show that the resulting $G-C^\ast$-dynamical systems are classified by equivariant Kasparov theory, up to cocycle conjugacy. This is the first classification theory of its kind applicable to actions of arbitrary locally compact groups. Among various applications, our main result solves a conjecture of Izumi for actions of discrete amenable torsion-free groups, and recovers the main results of recent work by Izumi–Matui for actions of poly-$\mathbb{Z}$ groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信