多资产加密金融市场中的最优交易特征描述

C. Escudero, F. Lara, M. Sama
{"title":"多资产加密金融市场中的最优交易特征描述","authors":"C. Escudero, F. Lara, M. Sama","doi":"arxiv-2405.06854","DOIUrl":null,"url":null,"abstract":"This work focuses on the mathematical study of constant function market\nmakers. We rigorously establish the conditions for optimal trading under the\nassumption of a quasilinear, but not necessarily convex (or concave), trade\nfunction. This generalizes previous results that used convexity, and also\nguarantees the robustness against arbitrage of so-designed automatic market\nmakers. The theoretical results are illustrated by families of examples given\nby generalized means, and also by numerical simulations in certain concrete\ncases. These simulations along with the mathematical analysis suggest that the\nquasilinear-trade-function based automatic market makers might replicate the\nfunctioning of those based on convex functions, in particular regarding their\nresilience to arbitrage.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Trade Characterizations in Multi-Asset Crypto-Financial Markets\",\"authors\":\"C. Escudero, F. Lara, M. Sama\",\"doi\":\"arxiv-2405.06854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the mathematical study of constant function market\\nmakers. We rigorously establish the conditions for optimal trading under the\\nassumption of a quasilinear, but not necessarily convex (or concave), trade\\nfunction. This generalizes previous results that used convexity, and also\\nguarantees the robustness against arbitrage of so-designed automatic market\\nmakers. The theoretical results are illustrated by families of examples given\\nby generalized means, and also by numerical simulations in certain concrete\\ncases. These simulations along with the mathematical analysis suggest that the\\nquasilinear-trade-function based automatic market makers might replicate the\\nfunctioning of those based on convex functions, in particular regarding their\\nresilience to arbitrage.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.06854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的重点是恒定函数做市商的数学研究。我们严格建立了在准线性(但不一定是凸(或凹))交易函数假设下的最优交易条件。这概括了之前使用凸性的结果,同时也保证了如此设计的自动做市商对套利的稳健性。理论结果通过广义方法给出的一系列例子以及某些具体案例的数字模拟加以说明。这些模拟和数学分析表明,基于类线性交易函数的自动做市商可能会复制基于凸函数的自动做市商的功能,特别是在抗套利能力方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Trade Characterizations in Multi-Asset Crypto-Financial Markets
This work focuses on the mathematical study of constant function market makers. We rigorously establish the conditions for optimal trading under the assumption of a quasilinear, but not necessarily convex (or concave), trade function. This generalizes previous results that used convexity, and also guarantees the robustness against arbitrage of so-designed automatic market makers. The theoretical results are illustrated by families of examples given by generalized means, and also by numerical simulations in certain concrete cases. These simulations along with the mathematical analysis suggest that the quasilinear-trade-function based automatic market makers might replicate the functioning of those based on convex functions, in particular regarding their resilience to arbitrage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信